Spaces:
Runtime error
Runtime error
import time | |
import os | |
import multiprocessing | |
import torch | |
import requests | |
import asyncio | |
import json | |
import aiohttp | |
from minivectordb.embedding_model import EmbeddingModel | |
from minivectordb.vector_database import VectorDatabase | |
from text_util_en_pt.cleaner import structurize_text, detect_language, Language | |
from webtextcrawler.webtextcrawler import extract_text_from_url | |
import gradio as gr | |
from googlesearch import search | |
torch.set_num_threads(2) | |
openrouter_key = os.environ.get("sk-proj-sbgYj5kgnU35y0xjMSEyT3BlbkFJRMigEKIR9YdLqyx4y5bD") | |
model = EmbeddingModel(use_quantized_onnx_model=True) | |
def fetch_links(query, max_results=10): | |
return list(search(query, num_results=max_results)) | |
def fetch_texts(links): | |
with multiprocessing.Pool(10) as pool: | |
texts = pool.map(extract_text_from_url, links) | |
return '\n'.join([t for t in texts if t]) | |
def index_and_search(query, text): | |
start = time.time() | |
query_embedding = model.extract_embeddings(query) | |
# Indexing | |
vector_db = VectorDatabase() | |
sentences = [s['sentence'] for s in structurize_text(text)] | |
for idx, sentence in enumerate(sentences): | |
sentence_embedding = model.extract_embeddings(sentence) | |
vector_db.store_embedding(idx + 1, sentence_embedding, {'sentence': sentence}) | |
embedding_time = time.time() - start | |
# Retrieval | |
start = time.time() | |
search_results = vector_db.find_most_similar(query_embedding, k=30) | |
retrieval_time = time.time() - start | |
return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time | |
def generate_search_terms(message, lang): | |
if lang == Language.ptbr: | |
prompt = f"A partir do texto a seguir, gere alguns termos de pesquisa: \"{message}\"\nSua resposta deve ser apenas o termo de busca mais adequado, e nada mais." | |
else: | |
prompt = f"From the following text, generate some search terms: \"{message}\"\nYour answer should be just the most appropriate search term, and nothing else." | |
url = "https://openrouter.ai/api/v1/chat/completions" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openrouter_key}" | |
} | |
body = { | |
"stream": False, | |
"models": [ | |
"mistralai/mistral-7b-instruct:free", | |
"openchat/openchat-7b:free" | |
], | |
"route": "fallback", | |
"max_tokens": 1024, | |
"messages": [ | |
{"role": "user", "content": prompt} | |
] | |
} | |
response = requests.post(url, headers=headers, json=body) | |
response_json = response.json() | |
try: | |
return response_json['choices'][0]['message']['content'] | |
except KeyError: | |
print(f"Error: 'choices' key not found in the response. Response: {response_json}") | |
return None | |
async def predict(message, history): | |
full_response = "" | |
query_language = detect_language(message) | |
start = time.time() | |
full_response += "Generating search terms...\n" | |
yield full_response | |
search_query = generate_search_terms(message, query_language) | |
search_terms_time = time.time() - start | |
full_response += f"Search terms: \"{search_query}\"\n" | |
yield full_response | |
full_response += f"Search terms took: {search_terms_time:.4f} seconds\n" | |
yield full_response | |
start = time.time() | |
full_response += "\nSearching the web...\n" | |
yield full_response | |
links = fetch_links(search_query) | |
websearch_time = time.time() - start | |
full_response += f"Web search took: {websearch_time:.4f} seconds\n" | |
yield full_response | |
full_response += f"Links visited:\n" | |
yield full_response | |
for link in links: | |
full_response += f"{link}\n" | |
yield full_response | |
full_response += "\nExtracting text from web pages...\n" | |
yield full_response | |
start = time.time() | |
text = fetch_texts(links) | |
webcrawl_time = time.time() - start | |
full_response += f"Text extraction took: {webcrawl_time:.4f} seconds\n" | |
full_response += "\nIndexing in vector database and building prompt...\n" | |
yield full_response | |
context, embedding_time, retrieval_time = index_and_search(message, text) | |
if query_language == Language.ptbr: | |
prompt = f"Contexto:\n{context}\n\nResponda: \"{message}\"\n(Você pode utilizar o contexto para responder)\n(Sua resposta deve ser completa, detalhada e bem estruturada)" | |
else: | |
prompt = f"Context:\n{context}\n\nAnswer: \"{message}\"\n(You can use the context to answer)\n(Your answer should be complete, detailed and well-structured)" | |
full_response += f"Embedding time: {embedding_time:.4f} seconds\n" | |
full_response += f"Retrieval from VectorDB time: {retrieval_time:.4f} seconds\n" | |
yield full_response | |
full_response += "\nGenerating response...\n" | |
yield full_response | |
full_response += "\nResponse: " | |
url = "https://openrouter.ai/api/v1/chat/completions" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openrouter_key}" | |
} | |
body = { | |
"stream": True, | |
"models": [ | |
"mistralai/mistral-7b-instruct:free", | |
"openchat/openchat-7b:free" | |
], | |
"route": "fallback", | |
"max_tokens": 1024, | |
"messages": [ | |
{"role": "user", "content": prompt} | |
] | |
} | |
async with aiohttp.ClientSession() as session: | |
async with session.post(url, headers=headers, json=body) as response: | |
buffer = "" # A buffer to hold incomplete lines of data | |
async for chunk in response.content.iter_any(): | |
buffer += chunk.decode() | |
while "\n" in buffer: # Process as long as there are complete lines in the buffer | |
line, buffer = buffer.split("\n", 1) | |
if line.startswith("data: "): | |
event_data = line[len("data: "):] | |
if event_data != '[DONE]': | |
try: | |
current_text = json.loads(event_data)['choices'][0]['delta']['content'] | |
full_response += current_text | |
yield full_response | |
await asyncio.sleep(0.01) | |
except Exception: | |
try: | |
current_text = json.loads(event_data)['choices'][0]['text'] | |
full_response += current_text | |
yield full_response | |
await asyncio.sleep(0.01) | |
except Exception: | |
pass | |
gr.ChatInterface( | |
predict, | |
title="Live Web Chat", | |
description="", | |
retry_btn=None, | |
undo_btn=None, | |
examples=[ | |
'What is the current sentiment of the Brazil election?', | |
'Compare the current economies of China and India?', | |
'What are new shoe design trends in 2024', | |
] | |
).launch() | |