Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,17 @@
|
|
1 |
-
import time, os, multiprocessing, torch
|
2 |
from minivectordb.embedding_model import EmbeddingModel
|
3 |
from minivectordb.vector_database import VectorDatabase
|
4 |
from text_util_en_pt.cleaner import structurize_text, detect_language, Language
|
5 |
from webtextcrawler.webtextcrawler import extract_text_from_url
|
6 |
-
from duckduckgo_search import DDGS
|
7 |
-
import google.generativeai as genai
|
8 |
import gradio as gr
|
|
|
9 |
|
10 |
torch.set_num_threads(2)
|
11 |
-
|
12 |
-
genai.configure(api_key=gemini_key)
|
13 |
-
gemini = genai.GenerativeModel('gemini-pro')
|
14 |
model = EmbeddingModel(use_quantized_onnx_model=True)
|
15 |
|
16 |
def fetch_links(query, max_results=10):
|
17 |
-
|
18 |
-
return [r['href'] for r in ddgs.text(keywords=query, max_results=max_results)]
|
19 |
|
20 |
def fetch_texts(links):
|
21 |
with multiprocessing.Pool(10) as pool:
|
@@ -48,8 +44,22 @@ def generate_search_terms(message, lang):
|
|
48 |
else:
|
49 |
prompt = f"From the following text, generate some search terms: \"{message}\"\nYour answer should be just the most appropriate search term, and nothing else."
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
async def predict(message, history):
|
55 |
full_response = ""
|
@@ -108,10 +118,45 @@ async def predict(message, history):
|
|
108 |
yield full_response
|
109 |
|
110 |
full_response += "\nResponse: "
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
gr.ChatInterface(
|
117 |
predict,
|
|
|
1 |
+
import time, os, multiprocessing, torch, requests, asyncio, json, aiohttp
|
2 |
from minivectordb.embedding_model import EmbeddingModel
|
3 |
from minivectordb.vector_database import VectorDatabase
|
4 |
from text_util_en_pt.cleaner import structurize_text, detect_language, Language
|
5 |
from webtextcrawler.webtextcrawler import extract_text_from_url
|
|
|
|
|
6 |
import gradio as gr
|
7 |
+
from googlesearch import search
|
8 |
|
9 |
torch.set_num_threads(2)
|
10 |
+
openrouter_key = os.environ.get("OPENROUTER_KEY")
|
|
|
|
|
11 |
model = EmbeddingModel(use_quantized_onnx_model=True)
|
12 |
|
13 |
def fetch_links(query, max_results=10):
|
14 |
+
return list(search(query, num_results=max_results))
|
|
|
15 |
|
16 |
def fetch_texts(links):
|
17 |
with multiprocessing.Pool(10) as pool:
|
|
|
44 |
else:
|
45 |
prompt = f"From the following text, generate some search terms: \"{message}\"\nYour answer should be just the most appropriate search term, and nothing else."
|
46 |
|
47 |
+
url = "https://openrouter.ai/api/v1/chat/completions"
|
48 |
+
headers = { "Content-Type": "application/json",
|
49 |
+
"Authorization": f"Bearer {openrouter_key}" }
|
50 |
+
body = { "stream": False,
|
51 |
+
"models": [
|
52 |
+
"mistralai/mistral-7b-instruct:free",
|
53 |
+
"openchat/openchat-7b:free"
|
54 |
+
],
|
55 |
+
"route": "fallback",
|
56 |
+
"max_tokens": 1024,
|
57 |
+
"messages": [
|
58 |
+
{"role": "user", "content": prompt}
|
59 |
+
] }
|
60 |
+
|
61 |
+
response = requests.post(url, headers=headers, json=body)
|
62 |
+
return response.json()['choices'][0]['message']['content']
|
63 |
|
64 |
async def predict(message, history):
|
65 |
full_response = ""
|
|
|
118 |
yield full_response
|
119 |
|
120 |
full_response += "\nResponse: "
|
121 |
+
|
122 |
+
url = "https://openrouter.ai/api/v1/chat/completions"
|
123 |
+
headers = { "Content-Type": "application/json",
|
124 |
+
"Authorization": f"Bearer {openrouter_key}" }
|
125 |
+
body = { "stream": True,
|
126 |
+
"models": [
|
127 |
+
"mistralai/mistral-7b-instruct:free",
|
128 |
+
"openchat/openchat-7b:free"
|
129 |
+
],
|
130 |
+
"route": "fallback",
|
131 |
+
"max_tokens": 1024,
|
132 |
+
"messages": [
|
133 |
+
{"role": "user", "content": prompt}
|
134 |
+
] }
|
135 |
+
|
136 |
+
async with aiohttp.ClientSession() as session:
|
137 |
+
async with session.post(url, headers=headers, json=body) as response:
|
138 |
+
buffer = "" # A buffer to hold incomplete lines of data
|
139 |
+
async for chunk in response.content.iter_any():
|
140 |
+
buffer += chunk.decode()
|
141 |
+
while "\n" in buffer: # Process as long as there are complete lines in the buffer
|
142 |
+
line, buffer = buffer.split("\n", 1)
|
143 |
+
|
144 |
+
if line.startswith("data: "):
|
145 |
+
event_data = line[len("data: "):]
|
146 |
+
if event_data != '[DONE]':
|
147 |
+
try:
|
148 |
+
current_text = json.loads(event_data)['choices'][0]['delta']['content']
|
149 |
+
full_response += current_text
|
150 |
+
yield full_response
|
151 |
+
await asyncio.sleep(0.01)
|
152 |
+
except Exception:
|
153 |
+
try:
|
154 |
+
current_text = json.loads(event_data)['choices'][0]['text']
|
155 |
+
full_response += current_text
|
156 |
+
yield full_response
|
157 |
+
await asyncio.sleep(0.01)
|
158 |
+
except Exception:
|
159 |
+
pass
|
160 |
|
161 |
gr.ChatInterface(
|
162 |
predict,
|