diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..591da1905528cce12c7539f193abf43f4ab11f90 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,38 @@ +*.7z filter=lfs diff=lfs merge=lfs -text +*.arrow filter=lfs diff=lfs merge=lfs -text +*.bin filter=lfs diff=lfs merge=lfs -text +*.bz2 filter=lfs diff=lfs merge=lfs -text +*.ckpt filter=lfs diff=lfs merge=lfs -text +*.ftz filter=lfs diff=lfs merge=lfs -text +*.gz filter=lfs diff=lfs merge=lfs -text +*.h5 filter=lfs diff=lfs merge=lfs -text +*.joblib filter=lfs diff=lfs merge=lfs -text +*.lfs.* filter=lfs diff=lfs merge=lfs -text +*.mlmodel filter=lfs diff=lfs merge=lfs -text +*.model filter=lfs diff=lfs merge=lfs -text +*.msgpack filter=lfs diff=lfs merge=lfs -text +*.npy filter=lfs diff=lfs merge=lfs -text +*.npz filter=lfs diff=lfs merge=lfs -text +*.onnx filter=lfs diff=lfs merge=lfs -text +*.ot filter=lfs diff=lfs merge=lfs -text +*.parquet filter=lfs diff=lfs merge=lfs -text +*.pb filter=lfs diff=lfs merge=lfs -text +*.pickle filter=lfs diff=lfs merge=lfs -text +*.pkl filter=lfs diff=lfs merge=lfs -text +*.pt filter=lfs diff=lfs merge=lfs -text +*.pth filter=lfs diff=lfs merge=lfs -text +*.rar filter=lfs diff=lfs merge=lfs -text +*.safetensors filter=lfs diff=lfs merge=lfs -text +saved_model/**/* filter=lfs diff=lfs merge=lfs -text +*.tar.* filter=lfs diff=lfs merge=lfs -text +*.tar filter=lfs diff=lfs merge=lfs -text +*.tflite filter=lfs diff=lfs merge=lfs -text +*.tgz filter=lfs diff=lfs merge=lfs -text +*.wasm filter=lfs diff=lfs merge=lfs -text +*.xz filter=lfs diff=lfs merge=lfs -text +*.zip filter=lfs diff=lfs merge=lfs -text +*.zst filter=lfs diff=lfs merge=lfs -text +*tfevents* filter=lfs diff=lfs merge=lfs -text + +# Index files +*.index filter=lfs diff=lfs merge=lfs -text \ No newline at end of file diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..4081b725c80d515eb380770cb5b84bd25b0549d6 --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +venv/ +__pycache__/ +*.mp3 \ No newline at end of file diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..d11687397a667744c76a2b3280a153b98213253a --- /dev/null +++ b/README.md @@ -0,0 +1,13 @@ +--- +title: RVC okiba TTS +emoji: 😊🎙️ +colorFrom: red +colorTo: indigo +sdk: gradio +sdk_version: 3.38.0 +app_file: app.py +pinned: false +duplicated_from: litagin/rvc_okiba_TTS +--- + +Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..9806af7ed245d4aef0a639bafaea2cef031a05d9 --- /dev/null +++ b/app.py @@ -0,0 +1,368 @@ +import asyncio +import datetime +import logging +import os +import time +import traceback + +import edge_tts +import gradio as gr +import librosa +import torch +from fairseq import checkpoint_utils + +from config import Config +from lib.infer_pack.models import ( + SynthesizerTrnMs256NSFsid, + SynthesizerTrnMs256NSFsid_nono, + SynthesizerTrnMs768NSFsid, + SynthesizerTrnMs768NSFsid_nono, +) +from rmvpe import RMVPE +from vc_infer_pipeline import VC + +logging.getLogger("fairseq").setLevel(logging.WARNING) +logging.getLogger("numba").setLevel(logging.WARNING) +logging.getLogger("markdown_it").setLevel(logging.WARNING) +logging.getLogger("urllib3").setLevel(logging.WARNING) +logging.getLogger("matplotlib").setLevel(logging.WARNING) + +limitation = os.getenv("SYSTEM") == "spaces" + +config = Config() + +# Edge TTS +edge_output_filename = "edge_output.mp3" +tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) +tts_voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] + +# RVC models +model_root = "weights" +models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")] +models.sort() + + +def model_data(model_name): + # global n_spk, tgt_sr, net_g, vc, cpt, version, index_file + pth_path = [ + f"{model_root}/{model_name}/{f}" + for f in os.listdir(f"{model_root}/{model_name}") + if f.endswith(".pth") + ][0] + print(f"Loading {pth_path}") + cpt = torch.load(pth_path, map_location="cpu") + tgt_sr = cpt["config"][-1] + cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk + if_f0 = cpt.get("f0", 1) + version = cpt.get("version", "v1") + if version == "v1": + if if_f0 == 1: + net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) + else: + net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) + elif version == "v2": + if if_f0 == 1: + net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) + else: + net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) + else: + raise ValueError("Unknown version") + del net_g.enc_q + net_g.load_state_dict(cpt["weight"], strict=False) + print("Model loaded") + net_g.eval().to(config.device) + if config.is_half: + net_g = net_g.half() + else: + net_g = net_g.float() + vc = VC(tgt_sr, config) + # n_spk = cpt["config"][-3] + + index_files = [ + f"{model_root}/{model_name}/{f}" + for f in os.listdir(f"{model_root}/{model_name}") + if f.endswith(".index") + ] + if len(index_files) == 0: + print("No index file found") + index_file = "" + else: + index_file = index_files[0] + print(f"Index file found: {index_file}") + + return tgt_sr, net_g, vc, version, index_file, if_f0 + + +def load_hubert(): + # global hubert_model + models, _, _ = checkpoint_utils.load_model_ensemble_and_task( + ["hubert_base.pt"], + suffix="", + ) + hubert_model = models[0] + hubert_model = hubert_model.to(config.device) + if config.is_half: + hubert_model = hubert_model.half() + else: + hubert_model = hubert_model.float() + return hubert_model.eval() + + +def tts( + model_name, + speed, + tts_text, + tts_voice, + f0_up_key, + f0_method, + index_rate, + protect, + filter_radius=3, + resample_sr=0, + rms_mix_rate=0.25, +): + print("------------------") + print(datetime.datetime.now()) + print("tts_text:") + print(tts_text) + print(f"tts_voice: {tts_voice}, speed: {speed}") + print(f"Model name: {model_name}") + print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}") + try: + if limitation and len(tts_text) > 280: + print("Error: Text too long") + return ( + f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.", + None, + None, + ) + t0 = time.time() + if speed >= 0: + speed_str = f"+{speed}%" + else: + speed_str = f"{speed}%" + asyncio.run( + edge_tts.Communicate( + tts_text, "-".join(tts_voice.split("-")[:-1]), rate=speed_str + ).save(edge_output_filename) + ) + t1 = time.time() + edge_time = t1 - t0 + audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True) + duration = len(audio) / sr + print(f"Audio duration: {duration}s") + if limitation and duration >= 20: + print("Error: Audio too long") + return ( + f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.", + edge_output_filename, + None, + ) + f0_up_key = int(f0_up_key) + + tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name) + if f0_method == "rmvpe": + vc.model_rmvpe = rmvpe_model + times = [0, 0, 0] + audio_opt = vc.pipeline( + hubert_model, + net_g, + 0, + audio, + edge_output_filename, + times, + f0_up_key, + f0_method, + index_file, + # file_big_npy, + index_rate, + if_f0, + filter_radius, + tgt_sr, + resample_sr, + rms_mix_rate, + version, + protect, + None, + ) + if tgt_sr != resample_sr >= 16000: + tgt_sr = resample_sr + info = f"Success. Time: edge-tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s" + print(info) + return ( + info, + edge_output_filename, + (tgt_sr, audio_opt), + ) + except EOFError: + info = ( + "It seems that the edge-tts output is not valid. " + "This may occur when the input text and the speaker do not match. " + "For example, maybe you entered Japanese (without alphabets) text but chose non-Japanese speaker?" + ) + print(info) + return info, None, None + except: + info = traceback.format_exc() + print(info) + return info, None, None + + +print("Loading hubert model...") +hubert_model = load_hubert() +print("Hubert model loaded.") + +print("Loading rmvpe model...") +rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) +print("rmvpe model loaded.") + +initial_md = """ +# RVC text-to-speech demo + +This is a text-to-speech demo of RVC moe models of [rvc_okiba](https://huggingface.co/litagin/rvc_okiba) using [edge-tts](https://github.com/rany2/edge-tts). + +Input text ➡[(edge-tts)](https://github.com/rany2/edge-tts)➡ Speech mp3 file ➡[(RVC)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)➡ Final output + +This runs on the 🤗 server's cpu, so it may be slow. + +Although the models are trained on Japanese voices and intended for Japanese text, they can also be used with other languages with the corresponding edge-tts speaker (but possibly with a Japanese accent). + +Input characters are limited to 280 characters, and the speech audio is limited to 20 seconds in this 🤗 space. + +[Visit this GitHub repo](https://github.com/litagin02/rvc-tts-webui) for running locally with your models and GPU! +""" + +app = gr.Blocks() +with app: + gr.Markdown(initial_md) + with gr.Row(): + with gr.Column(): + model_name = gr.Dropdown( + label="Model (all models except man-_ are girl models)", + choices=models, + value=models[0], + ) + f0_key_up = gr.Number( + label="Tune (+12 = 1 octave up from edge-tts, the best value depends on the models and speakers)", + value=2, + ) + with gr.Column(): + f0_method = gr.Radio( + label="Pitch extraction method (pm: very fast, low quality, rmvpe: a little slow, high quality)", + choices=["pm", "rmvpe"], # harvest and crepe is too slow + value="rmvpe", + interactive=True, + ) + index_rate = gr.Slider( + minimum=0, + maximum=1, + label="Index rate", + value=1, + interactive=True, + ) + protect0 = gr.Slider( + minimum=0, + maximum=0.5, + label="Protect", + value=0.33, + step=0.01, + interactive=True, + ) + with gr.Row(): + with gr.Column(): + tts_voice = gr.Dropdown( + label="Edge-tts speaker (format: language-Country-Name-Gender), make sure the gender matches the model", + choices=tts_voices, + allow_custom_value=False, + value="ja-JP-NanamiNeural-Female", + ) + speed = gr.Slider( + minimum=-100, + maximum=100, + label="Speech speed (%)", + value=0, + step=10, + interactive=True, + ) + tts_text = gr.Textbox(label="Input Text", value="これは日本語テキストから音声への変換デモです。") + with gr.Column(): + but0 = gr.Button("Convert", variant="primary") + info_text = gr.Textbox(label="Output info") + with gr.Column(): + edge_tts_output = gr.Audio(label="Edge Voice", type="filepath") + tts_output = gr.Audio(label="Result") + but0.click( + tts, + [ + model_name, + speed, + tts_text, + tts_voice, + f0_key_up, + f0_method, + index_rate, + protect0, + ], + [info_text, edge_tts_output, tts_output], + ) + with gr.Row(): + examples = gr.Examples( + examples_per_page=100, + examples=[ + ["これは日本語テキストから音声への変換デモです。", "ja-JP-NanamiNeural-Female"], + [ + "This is an English text to speech conversation demo.", + "en-US-AriaNeural-Female", + ], + ["这是一个中文文本到语音的转换演示。", "zh-CN-XiaoxiaoNeural-Female"], + ["한국어 텍스트에서 음성으로 변환하는 데모입니다.", "ko-KR-SunHiNeural-Female"], + [ + "Il s'agit d'une démo de conversion du texte français à la parole.", + "fr-FR-DeniseNeural-Female", + ], + [ + "Dies ist eine Demo zur Umwandlung von Deutsch in Sprache.", + "de-DE-AmalaNeural-Female", + ], + [ + "Tämä on suomenkielinen tekstistä puheeksi -esittely.", + "fi-FI-NooraNeural-Female", + ], + [ + "Это демонстрационный пример преобразования русского текста в речь.", + "ru-RU-SvetlanaNeural-Female", + ], + [ + "Αυτή είναι μια επίδειξη μετατροπής ελληνικού κειμένου σε ομιλία.", + "el-GR-AthinaNeural-Female", + ], + [ + "Esta es una demostración de conversión de texto a voz en español.", + "es-ES-ElviraNeural-Female", + ], + [ + "Questa è una dimostrazione di sintesi vocale in italiano.", + "it-IT-ElsaNeural-Female", + ], + [ + "Esta é uma demonstração de conversão de texto em fala em português.", + "pt-PT-RaquelNeural-Female", + ], + [ + "Це демонстрація тексту до мовлення українською мовою.", + "uk-UA-PolinaNeural-Female", + ], + [ + "هذا عرض توضيحي عربي لتحويل النص إلى كلام.", + "ar-EG-SalmaNeural-Female", + ], + [ + "இது தமிழ் உரையிலிருந்து பேச்சு மாற்ற டெமோ.", + "ta-IN-PallaviNeural-Female", + ], + ], + inputs=[tts_text, tts_voice], + ) + + +app.launch() diff --git a/config.py b/config.py new file mode 100644 index 0000000000000000000000000000000000000000..4038dad0ac30ba03b6271499f4e37bbc745a2032 --- /dev/null +++ b/config.py @@ -0,0 +1,115 @@ +import argparse +import sys +import torch +from multiprocessing import cpu_count + + +class Config: + def __init__(self): + self.device = "cuda:0" + self.is_half = True + self.n_cpu = 0 + self.gpu_name = None + self.gpu_mem = None + ( + self.python_cmd, + self.listen_port, + self.iscolab, + self.noparallel, + self.noautoopen, + ) = self.arg_parse() + self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() + + @staticmethod + def arg_parse() -> tuple: + exe = sys.executable or "python" + parser = argparse.ArgumentParser() + parser.add_argument("--port", type=int, default=7865, help="Listen port") + parser.add_argument("--pycmd", type=str, default=exe, help="Python command") + parser.add_argument("--colab", action="store_true", help="Launch in colab") + parser.add_argument( + "--noparallel", action="store_true", help="Disable parallel processing" + ) + parser.add_argument( + "--noautoopen", + action="store_true", + help="Do not open in browser automatically", + ) + cmd_opts = parser.parse_args() + + cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865 + + return ( + cmd_opts.pycmd, + cmd_opts.port, + cmd_opts.colab, + cmd_opts.noparallel, + cmd_opts.noautoopen, + ) + + # has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. + # check `getattr` and try it for compatibility + @staticmethod + def has_mps() -> bool: + if not torch.backends.mps.is_available(): + return False + try: + torch.zeros(1).to(torch.device("mps")) + return True + except Exception: + return False + + def device_config(self) -> tuple: + if torch.cuda.is_available(): + i_device = int(self.device.split(":")[-1]) + self.gpu_name = torch.cuda.get_device_name(i_device) + if ( + ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) + or "P40" in self.gpu_name.upper() + or "1060" in self.gpu_name + or "1070" in self.gpu_name + or "1080" in self.gpu_name + ): + print("Found GPU", self.gpu_name, ", force to fp32") + self.is_half = False + else: + print("Found GPU", self.gpu_name) + self.gpu_mem = int( + torch.cuda.get_device_properties(i_device).total_memory + / 1024 + / 1024 + / 1024 + + 0.4 + ) + elif self.has_mps(): + print("No supported Nvidia GPU found, use MPS instead") + self.device = "mps" + self.is_half = False + else: + print("No supported Nvidia GPU found, use CPU instead") + self.device = "cpu" + self.is_half = False + + if self.n_cpu == 0: + self.n_cpu = cpu_count() + + if self.is_half: + # 6G显存配置 + x_pad = 3 + x_query = 10 + x_center = 60 + x_max = 65 + else: + # 5G显存配置 + x_pad = 1 + x_query = 6 + x_center = 38 + x_max = 41 + + if self.gpu_mem != None and self.gpu_mem <= 4: + x_pad = 1 + x_query = 5 + x_center = 30 + x_max = 32 + + return x_pad, x_query, x_center, x_max diff --git a/hubert_base.pt b/hubert_base.pt new file mode 100644 index 0000000000000000000000000000000000000000..72f47ab58564f01d5cc8b05c63bdf96d944551ff --- /dev/null +++ b/hubert_base.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96 +size 189507909 diff --git a/lib/infer_pack/attentions.py b/lib/infer_pack/attentions.py new file mode 100644 index 0000000000000000000000000000000000000000..05501be1871643f78dddbeaa529c96667031a8db --- /dev/null +++ b/lib/infer_pack/attentions.py @@ -0,0 +1,417 @@ +import copy +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +from lib.infer_pack import commons +from lib.infer_pack import modules +from lib.infer_pack.modules import LayerNorm + + +class Encoder(nn.Module): + def __init__( + self, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size=1, + p_dropout=0.0, + window_size=10, + **kwargs + ): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.window_size = window_size + + self.drop = nn.Dropout(p_dropout) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.attn_layers.append( + MultiHeadAttention( + hidden_channels, + hidden_channels, + n_heads, + p_dropout=p_dropout, + window_size=window_size, + ) + ) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append( + FFN( + hidden_channels, + hidden_channels, + filter_channels, + kernel_size, + p_dropout=p_dropout, + ) + ) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask): + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.attn_layers[i](x, x, attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class Decoder(nn.Module): + def __init__( + self, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size=1, + p_dropout=0.0, + proximal_bias=False, + proximal_init=True, + **kwargs + ): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + + self.drop = nn.Dropout(p_dropout) + self.self_attn_layers = nn.ModuleList() + self.norm_layers_0 = nn.ModuleList() + self.encdec_attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.self_attn_layers.append( + MultiHeadAttention( + hidden_channels, + hidden_channels, + n_heads, + p_dropout=p_dropout, + proximal_bias=proximal_bias, + proximal_init=proximal_init, + ) + ) + self.norm_layers_0.append(LayerNorm(hidden_channels)) + self.encdec_attn_layers.append( + MultiHeadAttention( + hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout + ) + ) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append( + FFN( + hidden_channels, + hidden_channels, + filter_channels, + kernel_size, + p_dropout=p_dropout, + causal=True, + ) + ) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, h, h_mask): + """ + x: decoder input + h: encoder output + """ + self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to( + device=x.device, dtype=x.dtype + ) + encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.self_attn_layers[i](x, x, self_attn_mask) + y = self.drop(y) + x = self.norm_layers_0[i](x + y) + + y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class MultiHeadAttention(nn.Module): + def __init__( + self, + channels, + out_channels, + n_heads, + p_dropout=0.0, + window_size=None, + heads_share=True, + block_length=None, + proximal_bias=False, + proximal_init=False, + ): + super().__init__() + assert channels % n_heads == 0 + + self.channels = channels + self.out_channels = out_channels + self.n_heads = n_heads + self.p_dropout = p_dropout + self.window_size = window_size + self.heads_share = heads_share + self.block_length = block_length + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + self.attn = None + + self.k_channels = channels // n_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.drop = nn.Dropout(p_dropout) + + if window_size is not None: + n_heads_rel = 1 if heads_share else n_heads + rel_stddev = self.k_channels**-0.5 + self.emb_rel_k = nn.Parameter( + torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) + * rel_stddev + ) + self.emb_rel_v = nn.Parameter( + torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) + * rel_stddev + ) + + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + nn.init.xavier_uniform_(self.conv_v.weight) + if proximal_init: + with torch.no_grad(): + self.conv_k.weight.copy_(self.conv_q.weight) + self.conv_k.bias.copy_(self.conv_q.bias) + + def forward(self, x, c, attn_mask=None): + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + + x, self.attn = self.attention(q, k, v, mask=attn_mask) + + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + + scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) + if self.window_size is not None: + assert ( + t_s == t_t + ), "Relative attention is only available for self-attention." + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys( + query / math.sqrt(self.k_channels), key_relative_embeddings + ) + scores_local = self._relative_position_to_absolute_position(rel_logits) + scores = scores + scores_local + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attention_bias_proximal(t_s).to( + device=scores.device, dtype=scores.dtype + ) + if mask is not None: + scores = scores.masked_fill(mask == 0, -1e4) + if self.block_length is not None: + assert ( + t_s == t_t + ), "Local attention is only available for self-attention." + block_mask = ( + torch.ones_like(scores) + .triu(-self.block_length) + .tril(self.block_length) + ) + scores = scores.masked_fill(block_mask == 0, -1e4) + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + p_attn = self.drop(p_attn) + output = torch.matmul(p_attn, value) + if self.window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings( + self.emb_rel_v, t_s + ) + output = output + self._matmul_with_relative_values( + relative_weights, value_relative_embeddings + ) + output = ( + output.transpose(2, 3).contiguous().view(b, d, t_t) + ) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + def _matmul_with_relative_values(self, x, y): + """ + x: [b, h, l, m] + y: [h or 1, m, d] + ret: [b, h, l, d] + """ + ret = torch.matmul(x, y.unsqueeze(0)) + return ret + + def _matmul_with_relative_keys(self, x, y): + """ + x: [b, h, l, d] + y: [h or 1, m, d] + ret: [b, h, l, m] + """ + ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) + return ret + + def _get_relative_embeddings(self, relative_embeddings, length): + max_relative_position = 2 * self.window_size + 1 + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.window_size + 1), 0) + slice_start_position = max((self.window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad( + relative_embeddings, + commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), + ) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[ + :, slice_start_position:slice_end_position + ] + return used_relative_embeddings + + def _relative_position_to_absolute_position(self, x): + """ + x: [b, h, l, 2*l-1] + ret: [b, h, l, l] + """ + batch, heads, length, _ = x.size() + # Concat columns of pad to shift from relative to absolute indexing. + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) + + # Concat extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad( + x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) + ) + + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ + :, :, :length, length - 1 : + ] + return x_final + + def _absolute_position_to_relative_position(self, x): + """ + x: [b, h, l, l] + ret: [b, h, l, 2*l-1] + """ + batch, heads, length, _ = x.size() + # padd along column + x = F.pad( + x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) + ) + x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) + x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] + return x_final + + def _attention_bias_proximal(self, length): + """Bias for self-attention to encourage attention to close positions. + Args: + length: an integer scalar. + Returns: + a Tensor with shape [1, 1, length, length] + """ + r = torch.arange(length, dtype=torch.float32) + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) + + +class FFN(nn.Module): + def __init__( + self, + in_channels, + out_channels, + filter_channels, + kernel_size, + p_dropout=0.0, + activation=None, + causal=False, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.activation = activation + self.causal = causal + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) + self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) + self.drop = nn.Dropout(p_dropout) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + if self.activation == "gelu": + x = x * torch.sigmoid(1.702 * x) + else: + x = torch.relu(x) + x = self.drop(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x diff --git a/lib/infer_pack/commons.py b/lib/infer_pack/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..54470986f37825b35d90d7efa7437d1c26b87215 --- /dev/null +++ b/lib/infer_pack/commons.py @@ -0,0 +1,166 @@ +import math +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += ( + 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) + ) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def slice_segments2(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( + num_timescales - 1 + ) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment + ) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def convert_pad_shape(pad_shape): + l = pad_shape[::-1] + pad_shape = [item for sublist in l for item in sublist] + return pad_shape + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + device = duration.device + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2, 3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1.0 / norm_type) + return total_norm diff --git a/lib/infer_pack/models.py b/lib/infer_pack/models.py new file mode 100644 index 0000000000000000000000000000000000000000..3665d03bc0514a6ed07d3372ea24717dae1e0a65 --- /dev/null +++ b/lib/infer_pack/models.py @@ -0,0 +1,1142 @@ +import math, pdb, os +from time import time as ttime +import torch +from torch import nn +from torch.nn import functional as F +from lib.infer_pack import modules +from lib.infer_pack import attentions +from lib.infer_pack import commons +from lib.infer_pack.commons import init_weights, get_padding +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from lib.infer_pack.commons import init_weights +import numpy as np +from lib.infer_pack import commons + + +class TextEncoder256(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class TextEncoder768(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(768, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0, + ): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + def remove_weight_norm(self): + for i in range(self.n_flows): + self.flows[i * 2].remove_weight_norm() + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class SineGen(torch.nn.Module): + """Definition of sine generator + SineGen(samp_rate, harmonic_num = 0, + sine_amp = 0.1, noise_std = 0.003, + voiced_threshold = 0, + flag_for_pulse=False) + samp_rate: sampling rate in Hz + harmonic_num: number of harmonic overtones (default 0) + sine_amp: amplitude of sine-wavefrom (default 0.1) + noise_std: std of Gaussian noise (default 0.003) + voiced_thoreshold: F0 threshold for U/V classification (default 0) + flag_for_pulse: this SinGen is used inside PulseGen (default False) + Note: when flag_for_pulse is True, the first time step of a voiced + segment is always sin(np.pi) or cos(0) + """ + + def __init__( + self, + samp_rate, + harmonic_num=0, + sine_amp=0.1, + noise_std=0.003, + voiced_threshold=0, + flag_for_pulse=False, + ): + super(SineGen, self).__init__() + self.sine_amp = sine_amp + self.noise_std = noise_std + self.harmonic_num = harmonic_num + self.dim = self.harmonic_num + 1 + self.sampling_rate = samp_rate + self.voiced_threshold = voiced_threshold + + def _f02uv(self, f0): + # generate uv signal + uv = torch.ones_like(f0) + uv = uv * (f0 > self.voiced_threshold) + return uv + + def forward(self, f0, upp): + """sine_tensor, uv = forward(f0) + input F0: tensor(batchsize=1, length, dim=1) + f0 for unvoiced steps should be 0 + output sine_tensor: tensor(batchsize=1, length, dim) + output uv: tensor(batchsize=1, length, 1) + """ + with torch.no_grad(): + f0 = f0[:, None].transpose(1, 2) + f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) + # fundamental component + f0_buf[:, :, 0] = f0[:, :, 0] + for idx in np.arange(self.harmonic_num): + f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( + idx + 2 + ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic + rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 + rand_ini = torch.rand( + f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device + ) + rand_ini[:, 0] = 0 + rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini + tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 + tmp_over_one *= upp + tmp_over_one = F.interpolate( + tmp_over_one.transpose(2, 1), + scale_factor=upp, + mode="linear", + align_corners=True, + ).transpose(2, 1) + rad_values = F.interpolate( + rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose( + 2, 1 + ) ####### + tmp_over_one %= 1 + tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 + cumsum_shift = torch.zeros_like(rad_values) + cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 + sine_waves = torch.sin( + torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi + ) + sine_waves = sine_waves * self.sine_amp + uv = self._f02uv(f0) + uv = F.interpolate( + uv.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose(2, 1) + noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 + noise = noise_amp * torch.randn_like(sine_waves) + sine_waves = sine_waves * uv + noise + return sine_waves, uv, noise + + +class SourceModuleHnNSF(torch.nn.Module): + """SourceModule for hn-nsf + SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0) + sampling_rate: sampling_rate in Hz + harmonic_num: number of harmonic above F0 (default: 0) + sine_amp: amplitude of sine source signal (default: 0.1) + add_noise_std: std of additive Gaussian noise (default: 0.003) + note that amplitude of noise in unvoiced is decided + by sine_amp + voiced_threshold: threhold to set U/V given F0 (default: 0) + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + uv (batchsize, length, 1) + """ + + def __init__( + self, + sampling_rate, + harmonic_num=0, + sine_amp=0.1, + add_noise_std=0.003, + voiced_threshod=0, + is_half=True, + ): + super(SourceModuleHnNSF, self).__init__() + + self.sine_amp = sine_amp + self.noise_std = add_noise_std + self.is_half = is_half + # to produce sine waveforms + self.l_sin_gen = SineGen( + sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod + ) + + # to merge source harmonics into a single excitation + self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) + self.l_tanh = torch.nn.Tanh() + + def forward(self, x, upp=None): + sine_wavs, uv, _ = self.l_sin_gen(x, upp) + if self.is_half: + sine_wavs = sine_wavs.half() + sine_merge = self.l_tanh(self.l_linear(sine_wavs)) + return sine_merge, None, None # noise, uv + + +class GeneratorNSF(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels, + sr, + is_half=False, + ): + super(GeneratorNSF, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + + self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) + self.m_source = SourceModuleHnNSF( + sampling_rate=sr, harmonic_num=0, is_half=is_half + ) + self.noise_convs = nn.ModuleList() + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + c_cur = upsample_initial_channel // (2 ** (i + 1)) + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + if i + 1 < len(upsample_rates): + stride_f0 = np.prod(upsample_rates[i + 1 :]) + self.noise_convs.append( + Conv1d( + 1, + c_cur, + kernel_size=stride_f0 * 2, + stride=stride_f0, + padding=stride_f0 // 2, + ) + ) + else: + self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + self.upp = np.prod(upsample_rates) + + def forward(self, x, f0, g=None): + har_source, noi_source, uv = self.m_source(f0, self.upp) + har_source = har_source.transpose(1, 2) + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + x_source = self.noise_convs[i](har_source) + x = x + x_source + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +sr2sr = { + "32k": 32000, + "40k": 40000, + "48k": 48000, +} + + +class SynthesizerTrnMs256NSFsid(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds + ): # 这里ds是id,[bs,1] + # print(1,pitch.shape)#[bs,t] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) + pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) + # print(-2,pitchf.shape,z_slice.shape) + o = self.dec(z_slice, pitchf, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + if rate: + head = int(z_p.shape[2] * rate) + z_p = z_p[:, :, -head:] + x_mask = x_mask[:, :, -head:] + nsff0 = nsff0[:, -head:] + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec(z * x_mask, nsff0, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs768NSFsid(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder768( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds + ): # 这里ds是id,[bs,1] + # print(1,pitch.shape)#[bs,t] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) + pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) + # print(-2,pitchf.shape,z_slice.shape) + o = self.dec(z_slice, pitchf, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + if rate: + head = int(z_p.shape[2] * rate) + z_p = z_p[:, :, -head:] + x_mask = x_mask[:, :, -head:] + nsff0 = nsff0[:, -head:] + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec(z * x_mask, nsff0, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs256NSFsid_nono(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr=None, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=False, + ) + self.dec = Generator( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + o = self.dec(z_slice, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, sid, rate=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + if rate: + head = int(z_p.shape[2] * rate) + z_p = z_p[:, :, -head:] + x_mask = x_mask[:, :, -head:] + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec(z * x_mask, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs768NSFsid_nono(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr=None, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder768( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=False, + ) + self.dec = Generator( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + o = self.dec(z_slice, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, sid, rate=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + if rate: + head = int(z_p.shape[2] * rate) + z_p = z_p[:, :, -head:] + x_mask = x_mask[:, :, -head:] + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec(z * x_mask, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2, 3, 5, 7, 11, 17] + # periods = [3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class MultiPeriodDiscriminatorV2(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminatorV2, self).__init__() + # periods = [2, 3, 5, 7, 11, 17] + periods = [2, 3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f( + Conv2d( + 1, + 32, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 32, + 128, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 128, + 512, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 512, + 1024, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 1024, + 1024, + (kernel_size, 1), + 1, + padding=(get_padding(kernel_size, 1), 0), + ) + ), + ] + ) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap diff --git a/lib/infer_pack/models_dml.py b/lib/infer_pack/models_dml.py new file mode 100644 index 0000000000000000000000000000000000000000..958d7b29259763d2fea94caf8ba7e314c4a77d05 --- /dev/null +++ b/lib/infer_pack/models_dml.py @@ -0,0 +1,1124 @@ +import math, pdb, os +from time import time as ttime +import torch +from torch import nn +from torch.nn import functional as F +from lib.infer_pack import modules +from lib.infer_pack import attentions +from lib.infer_pack import commons +from lib.infer_pack.commons import init_weights, get_padding +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from lib.infer_pack.commons import init_weights +import numpy as np +from lib.infer_pack import commons + + +class TextEncoder256(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class TextEncoder768(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(768, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0, + ): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + def remove_weight_norm(self): + for i in range(self.n_flows): + self.flows[i * 2].remove_weight_norm() + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class SineGen(torch.nn.Module): + """Definition of sine generator + SineGen(samp_rate, harmonic_num = 0, + sine_amp = 0.1, noise_std = 0.003, + voiced_threshold = 0, + flag_for_pulse=False) + samp_rate: sampling rate in Hz + harmonic_num: number of harmonic overtones (default 0) + sine_amp: amplitude of sine-wavefrom (default 0.1) + noise_std: std of Gaussian noise (default 0.003) + voiced_thoreshold: F0 threshold for U/V classification (default 0) + flag_for_pulse: this SinGen is used inside PulseGen (default False) + Note: when flag_for_pulse is True, the first time step of a voiced + segment is always sin(np.pi) or cos(0) + """ + + def __init__( + self, + samp_rate, + harmonic_num=0, + sine_amp=0.1, + noise_std=0.003, + voiced_threshold=0, + flag_for_pulse=False, + ): + super(SineGen, self).__init__() + self.sine_amp = sine_amp + self.noise_std = noise_std + self.harmonic_num = harmonic_num + self.dim = self.harmonic_num + 1 + self.sampling_rate = samp_rate + self.voiced_threshold = voiced_threshold + + def _f02uv(self, f0): + # generate uv signal + uv = torch.ones_like(f0) + uv = uv * (f0 > self.voiced_threshold) + return uv.float() + + def forward(self, f0, upp): + """sine_tensor, uv = forward(f0) + input F0: tensor(batchsize=1, length, dim=1) + f0 for unvoiced steps should be 0 + output sine_tensor: tensor(batchsize=1, length, dim) + output uv: tensor(batchsize=1, length, 1) + """ + with torch.no_grad(): + f0 = f0[:, None].transpose(1, 2) + f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) + # fundamental component + f0_buf[:, :, 0] = f0[:, :, 0] + for idx in np.arange(self.harmonic_num): + f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( + idx + 2 + ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic + rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 + rand_ini = torch.rand( + f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device + ) + rand_ini[:, 0] = 0 + rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini + tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 + tmp_over_one *= upp + tmp_over_one = F.interpolate( + tmp_over_one.transpose(2, 1), + scale_factor=upp, + mode="linear", + align_corners=True, + ).transpose(2, 1) + rad_values = F.interpolate( + rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose( + 2, 1 + ) ####### + tmp_over_one %= 1 + tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 + cumsum_shift = torch.zeros_like(rad_values) + cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 + sine_waves = torch.sin( + torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi + ) + sine_waves = sine_waves * self.sine_amp + uv = self._f02uv(f0) + uv = F.interpolate( + uv.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose(2, 1) + noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 + noise = noise_amp * torch.randn_like(sine_waves) + sine_waves = sine_waves * uv + noise + return sine_waves, uv, noise + + +class SourceModuleHnNSF(torch.nn.Module): + """SourceModule for hn-nsf + SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0) + sampling_rate: sampling_rate in Hz + harmonic_num: number of harmonic above F0 (default: 0) + sine_amp: amplitude of sine source signal (default: 0.1) + add_noise_std: std of additive Gaussian noise (default: 0.003) + note that amplitude of noise in unvoiced is decided + by sine_amp + voiced_threshold: threhold to set U/V given F0 (default: 0) + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + uv (batchsize, length, 1) + """ + + def __init__( + self, + sampling_rate, + harmonic_num=0, + sine_amp=0.1, + add_noise_std=0.003, + voiced_threshod=0, + is_half=True, + ): + super(SourceModuleHnNSF, self).__init__() + + self.sine_amp = sine_amp + self.noise_std = add_noise_std + self.is_half = is_half + # to produce sine waveforms + self.l_sin_gen = SineGen( + sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod + ) + + # to merge source harmonics into a single excitation + self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) + self.l_tanh = torch.nn.Tanh() + + def forward(self, x, upp=None): + sine_wavs, uv, _ = self.l_sin_gen(x, upp) + if self.is_half: + sine_wavs = sine_wavs.half() + sine_merge = self.l_tanh(self.l_linear(sine_wavs)) + return sine_merge, None, None # noise, uv + + +class GeneratorNSF(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels, + sr, + is_half=False, + ): + super(GeneratorNSF, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + + self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) + self.m_source = SourceModuleHnNSF( + sampling_rate=sr, harmonic_num=0, is_half=is_half + ) + self.noise_convs = nn.ModuleList() + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + c_cur = upsample_initial_channel // (2 ** (i + 1)) + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + if i + 1 < len(upsample_rates): + stride_f0 = np.prod(upsample_rates[i + 1 :]) + self.noise_convs.append( + Conv1d( + 1, + c_cur, + kernel_size=stride_f0 * 2, + stride=stride_f0, + padding=stride_f0 // 2, + ) + ) + else: + self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + self.upp = np.prod(upsample_rates) + + def forward(self, x, f0, g=None): + har_source, noi_source, uv = self.m_source(f0, self.upp) + har_source = har_source.transpose(1, 2) + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + x_source = self.noise_convs[i](har_source) + x = x + x_source + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +sr2sr = { + "32k": 32000, + "40k": 40000, + "48k": 48000, +} + + +class SynthesizerTrnMs256NSFsid(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds + ): # 这里ds是id,[bs,1] + # print(1,pitch.shape)#[bs,t] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) + pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) + # print(-2,pitchf.shape,z_slice.shape) + o = self.dec(z_slice, pitchf, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs768NSFsid(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder768( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward( + self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds + ): # 这里ds是id,[bs,1] + # print(1,pitch.shape)#[bs,t] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) + pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) + # print(-2,pitchf.shape,z_slice.shape) + o = self.dec(z_slice, pitchf, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs256NSFsid_nono(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr=None, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=False, + ) + self.dec = Generator( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + o = self.dec(z_slice, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, sid, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class SynthesizerTrnMs768NSFsid_nono(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr=None, + **kwargs + ): + super().__init__() + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + self.enc_p = TextEncoder768( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=False, + ) + self.dec = Generator( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] + g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) + z_p = self.flow(z, y_mask, g=g) + z_slice, ids_slice = commons.rand_slice_segments( + z, y_lengths, self.segment_size + ) + o = self.dec(z_slice, g=g) + return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) + + def infer(self, phone, phone_lengths, sid, max_len=None): + g = self.emb_g(sid).unsqueeze(-1) + m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], g=g) + return o, x_mask, (z, z_p, m_p, logs_p) + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2, 3, 5, 7, 11, 17] + # periods = [3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class MultiPeriodDiscriminatorV2(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminatorV2, self).__init__() + # periods = [2, 3, 5, 7, 11, 17] + periods = [2, 3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f( + Conv2d( + 1, + 32, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 32, + 128, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 128, + 512, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 512, + 1024, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 1024, + 1024, + (kernel_size, 1), + 1, + padding=(get_padding(kernel_size, 1), 0), + ) + ), + ] + ) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap diff --git a/lib/infer_pack/models_onnx.py b/lib/infer_pack/models_onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..963e67b29f828e9fdd096397952054fe77cf3d10 --- /dev/null +++ b/lib/infer_pack/models_onnx.py @@ -0,0 +1,819 @@ +import math, pdb, os +from time import time as ttime +import torch +from torch import nn +from torch.nn import functional as F +from lib.infer_pack import modules +from lib.infer_pack import attentions +from lib.infer_pack import commons +from lib.infer_pack.commons import init_weights, get_padding +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm +from lib.infer_pack.commons import init_weights +import numpy as np +from lib.infer_pack import commons + + +class TextEncoder256(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(256, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class TextEncoder768(nn.Module): + def __init__( + self, + out_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + f0=True, + ): + super().__init__() + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.emb_phone = nn.Linear(768, hidden_channels) + self.lrelu = nn.LeakyReLU(0.1, inplace=True) + if f0 == True: + self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 + self.encoder = attentions.Encoder( + hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, phone, pitch, lengths): + if pitch == None: + x = self.emb_phone(phone) + else: + x = self.emb_phone(phone) + self.emb_pitch(pitch) + x = x * math.sqrt(self.hidden_channels) # [b, t, h] + x = self.lrelu(x) + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return m, logs, x_mask + + +class ResidualCouplingBlock(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + n_flows=4, + gin_channels=0, + ): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + def remove_weight_norm(self): + for i in range(self.n_flows): + self.flows[i * 2].remove_weight_norm() + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( + x.dtype + ) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +class SineGen(torch.nn.Module): + """Definition of sine generator + SineGen(samp_rate, harmonic_num = 0, + sine_amp = 0.1, noise_std = 0.003, + voiced_threshold = 0, + flag_for_pulse=False) + samp_rate: sampling rate in Hz + harmonic_num: number of harmonic overtones (default 0) + sine_amp: amplitude of sine-wavefrom (default 0.1) + noise_std: std of Gaussian noise (default 0.003) + voiced_thoreshold: F0 threshold for U/V classification (default 0) + flag_for_pulse: this SinGen is used inside PulseGen (default False) + Note: when flag_for_pulse is True, the first time step of a voiced + segment is always sin(np.pi) or cos(0) + """ + + def __init__( + self, + samp_rate, + harmonic_num=0, + sine_amp=0.1, + noise_std=0.003, + voiced_threshold=0, + flag_for_pulse=False, + ): + super(SineGen, self).__init__() + self.sine_amp = sine_amp + self.noise_std = noise_std + self.harmonic_num = harmonic_num + self.dim = self.harmonic_num + 1 + self.sampling_rate = samp_rate + self.voiced_threshold = voiced_threshold + + def _f02uv(self, f0): + # generate uv signal + uv = torch.ones_like(f0) + uv = uv * (f0 > self.voiced_threshold) + return uv + + def forward(self, f0, upp): + """sine_tensor, uv = forward(f0) + input F0: tensor(batchsize=1, length, dim=1) + f0 for unvoiced steps should be 0 + output sine_tensor: tensor(batchsize=1, length, dim) + output uv: tensor(batchsize=1, length, 1) + """ + with torch.no_grad(): + f0 = f0[:, None].transpose(1, 2) + f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) + # fundamental component + f0_buf[:, :, 0] = f0[:, :, 0] + for idx in np.arange(self.harmonic_num): + f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( + idx + 2 + ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic + rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 + rand_ini = torch.rand( + f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device + ) + rand_ini[:, 0] = 0 + rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini + tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 + tmp_over_one *= upp + tmp_over_one = F.interpolate( + tmp_over_one.transpose(2, 1), + scale_factor=upp, + mode="linear", + align_corners=True, + ).transpose(2, 1) + rad_values = F.interpolate( + rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose( + 2, 1 + ) ####### + tmp_over_one %= 1 + tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 + cumsum_shift = torch.zeros_like(rad_values) + cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 + sine_waves = torch.sin( + torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi + ) + sine_waves = sine_waves * self.sine_amp + uv = self._f02uv(f0) + uv = F.interpolate( + uv.transpose(2, 1), scale_factor=upp, mode="nearest" + ).transpose(2, 1) + noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 + noise = noise_amp * torch.randn_like(sine_waves) + sine_waves = sine_waves * uv + noise + return sine_waves, uv, noise + + +class SourceModuleHnNSF(torch.nn.Module): + """SourceModule for hn-nsf + SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, + add_noise_std=0.003, voiced_threshod=0) + sampling_rate: sampling_rate in Hz + harmonic_num: number of harmonic above F0 (default: 0) + sine_amp: amplitude of sine source signal (default: 0.1) + add_noise_std: std of additive Gaussian noise (default: 0.003) + note that amplitude of noise in unvoiced is decided + by sine_amp + voiced_threshold: threhold to set U/V given F0 (default: 0) + Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) + F0_sampled (batchsize, length, 1) + Sine_source (batchsize, length, 1) + noise_source (batchsize, length 1) + uv (batchsize, length, 1) + """ + + def __init__( + self, + sampling_rate, + harmonic_num=0, + sine_amp=0.1, + add_noise_std=0.003, + voiced_threshod=0, + is_half=True, + ): + super(SourceModuleHnNSF, self).__init__() + + self.sine_amp = sine_amp + self.noise_std = add_noise_std + self.is_half = is_half + # to produce sine waveforms + self.l_sin_gen = SineGen( + sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod + ) + + # to merge source harmonics into a single excitation + self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) + self.l_tanh = torch.nn.Tanh() + + def forward(self, x, upp=None): + sine_wavs, uv, _ = self.l_sin_gen(x, upp) + if self.is_half: + sine_wavs = sine_wavs.half() + sine_merge = self.l_tanh(self.l_linear(sine_wavs)) + return sine_merge, None, None # noise, uv + + +class GeneratorNSF(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels, + sr, + is_half=False, + ): + super(GeneratorNSF, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + + self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) + self.m_source = SourceModuleHnNSF( + sampling_rate=sr, harmonic_num=0, is_half=is_half + ) + self.noise_convs = nn.ModuleList() + self.conv_pre = Conv1d( + initial_channel, upsample_initial_channel, 7, 1, padding=3 + ) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + c_cur = upsample_initial_channel // (2 ** (i + 1)) + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + if i + 1 < len(upsample_rates): + stride_f0 = np.prod(upsample_rates[i + 1 :]) + self.noise_convs.append( + Conv1d( + 1, + c_cur, + kernel_size=stride_f0 * 2, + stride=stride_f0, + padding=stride_f0 // 2, + ) + ) + else: + self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate( + zip(resblock_kernel_sizes, resblock_dilation_sizes) + ): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + self.upp = np.prod(upsample_rates) + + def forward(self, x, f0, g=None): + har_source, noi_source, uv = self.m_source(f0, self.upp) + har_source = har_source.transpose(1, 2) + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + x_source = self.noise_convs[i](har_source) + x = x + x_source + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + return x + + def remove_weight_norm(self): + for l in self.ups: + remove_weight_norm(l) + for l in self.resblocks: + l.remove_weight_norm() + + +sr2sr = { + "32k": 32000, + "40k": 40000, + "48k": 48000, +} + + +class SynthesizerTrnMsNSFsidM(nn.Module): + def __init__( + self, + spec_channels, + segment_size, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + spk_embed_dim, + gin_channels, + sr, + version, + **kwargs + ): + super().__init__() + if type(sr) == type("strr"): + sr = sr2sr[sr] + self.spec_channels = spec_channels + self.inter_channels = inter_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.resblock = resblock + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.upsample_rates = upsample_rates + self.upsample_initial_channel = upsample_initial_channel + self.upsample_kernel_sizes = upsample_kernel_sizes + self.segment_size = segment_size + self.gin_channels = gin_channels + # self.hop_length = hop_length# + self.spk_embed_dim = spk_embed_dim + if version == "v1": + self.enc_p = TextEncoder256( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + else: + self.enc_p = TextEncoder768( + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + ) + self.dec = GeneratorNSF( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + sr=sr, + is_half=kwargs["is_half"], + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + self.flow = ResidualCouplingBlock( + inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels + ) + self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) + self.speaker_map = None + print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) + + def remove_weight_norm(self): + self.dec.remove_weight_norm() + self.flow.remove_weight_norm() + self.enc_q.remove_weight_norm() + + def construct_spkmixmap(self, n_speaker): + self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels)) + for i in range(n_speaker): + self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]])) + self.speaker_map = self.speaker_map.unsqueeze(0) + + def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None): + if self.speaker_map is not None: # [N, S] * [S, B, 1, H] + g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1] + g = g * self.speaker_map # [N, S, B, 1, H] + g = torch.sum(g, dim=1) # [N, 1, B, 1, H] + g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N] + else: + g = g.unsqueeze(0) + g = self.emb_g(g).transpose(1, 2) + + m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) + z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask + z = self.flow(z_p, x_mask, g=g, reverse=True) + o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) + return o + + +class MultiPeriodDiscriminator(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminator, self).__init__() + periods = [2, 3, 5, 7, 11, 17] + # periods = [3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class MultiPeriodDiscriminatorV2(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(MultiPeriodDiscriminatorV2, self).__init__() + # periods = [2, 3, 5, 7, 11, 17] + periods = [2, 3, 5, 7, 11, 17, 23, 37] + + discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] + discs = discs + [ + DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods + ] + self.discriminators = nn.ModuleList(discs) + + def forward(self, y, y_hat): + y_d_rs = [] # + y_d_gs = [] + fmap_rs = [] + fmap_gs = [] + for i, d in enumerate(self.discriminators): + y_d_r, fmap_r = d(y) + y_d_g, fmap_g = d(y_hat) + # for j in range(len(fmap_r)): + # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) + y_d_rs.append(y_d_r) + y_d_gs.append(y_d_g) + fmap_rs.append(fmap_r) + fmap_gs.append(fmap_g) + + return y_d_rs, y_d_gs, fmap_rs, fmap_gs + + +class DiscriminatorS(torch.nn.Module): + def __init__(self, use_spectral_norm=False): + super(DiscriminatorS, self).__init__() + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f(Conv1d(1, 16, 15, 1, padding=7)), + norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), + norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), + norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), + norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), + norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), + ] + ) + self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) + + def forward(self, x): + fmap = [] + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap + + +class DiscriminatorP(torch.nn.Module): + def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): + super(DiscriminatorP, self).__init__() + self.period = period + self.use_spectral_norm = use_spectral_norm + norm_f = weight_norm if use_spectral_norm == False else spectral_norm + self.convs = nn.ModuleList( + [ + norm_f( + Conv2d( + 1, + 32, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 32, + 128, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 128, + 512, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 512, + 1024, + (kernel_size, 1), + (stride, 1), + padding=(get_padding(kernel_size, 1), 0), + ) + ), + norm_f( + Conv2d( + 1024, + 1024, + (kernel_size, 1), + 1, + padding=(get_padding(kernel_size, 1), 0), + ) + ), + ] + ) + self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) + + def forward(self, x): + fmap = [] + + # 1d to 2d + b, c, t = x.shape + if t % self.period != 0: # pad first + n_pad = self.period - (t % self.period) + x = F.pad(x, (0, n_pad), "reflect") + t = t + n_pad + x = x.view(b, c, t // self.period, self.period) + + for l in self.convs: + x = l(x) + x = F.leaky_relu(x, modules.LRELU_SLOPE) + fmap.append(x) + x = self.conv_post(x) + fmap.append(x) + x = torch.flatten(x, 1, -1) + + return x, fmap diff --git a/lib/infer_pack/modules.py b/lib/infer_pack/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..c83289df7c79a4810dacd15c050148544ba0b6a9 --- /dev/null +++ b/lib/infer_pack/modules.py @@ -0,0 +1,522 @@ +import copy +import math +import numpy as np +import scipy +import torch +from torch import nn +from torch.nn import functional as F + +from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d +from torch.nn.utils import weight_norm, remove_weight_norm + +from lib.infer_pack import commons +from lib.infer_pack.commons import init_weights, get_padding +from lib.infer_pack.transforms import piecewise_rational_quadratic_transform + + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__( + self, + in_channels, + hidden_channels, + out_channels, + kernel_size, + n_layers, + p_dropout, + ): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append( + nn.Conv1d( + in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 + ) + ) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) + for _ in range(n_layers - 1): + self.conv_layers.append( + nn.Conv1d( + hidden_channels, + hidden_channels, + kernel_size, + padding=kernel_size // 2, + ) + ) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dialted and Depth-Separable Convolution + """ + + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size**i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append( + nn.Conv1d( + channels, + channels, + kernel_size, + groups=channels, + dilation=dilation, + padding=padding, + ) + ) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__( + self, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + p_dropout=0, + ): + super(WN, self).__init__() + assert kernel_size % 2 == 1 + self.hidden_channels = hidden_channels + self.kernel_size = (kernel_size,) + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d( + gin_channels, 2 * hidden_channels * n_layers, 1 + ) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") + + for i in range(n_layers): + dilation = dilation_rate**i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d( + hidden_channels, + 2 * hidden_channels, + kernel_size, + dilation=dilation, + padding=padding, + ) + in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:, : self.hidden_channels, :] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:, self.hidden_channels :, :] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ) + ), + ] + ) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + ] + ) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + ] + ) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels, 1)) + self.logs = nn.Parameter(torch.zeros(channels, 1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1, 2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False, + ): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=p_dropout, + gin_channels=gin_channels, + ) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels] * 2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1, 2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x + + def remove_weight_norm(self): + self.enc.remove_weight_norm() + + +class ConvFlow(nn.Module): + def __init__( + self, + in_channels, + filter_channels, + kernel_size, + n_layers, + num_bins=10, + tail_bound=5.0, + ): + super().__init__() + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.num_bins = num_bins + self.tail_bound = tail_bound + self.half_channels = in_channels // 2 + + self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) + self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) + self.proj = nn.Conv1d( + filter_channels, self.half_channels * (num_bins * 3 - 1), 1 + ) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) + h = self.convs(h, x_mask, g=g) + h = self.proj(h) * x_mask + + b, c, t = x0.shape + h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] + + unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( + self.filter_channels + ) + unnormalized_derivatives = h[..., 2 * self.num_bins :] + + x1, logabsdet = piecewise_rational_quadratic_transform( + x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails="linear", + tail_bound=self.tail_bound, + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1, 2]) + if not reverse: + return x, logdet + else: + return x diff --git a/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py b/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..ee3171bcb7c4a5066560723108b56e055f18be45 --- /dev/null +++ b/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py @@ -0,0 +1,90 @@ +from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor +import pyworld +import numpy as np + + +class DioF0Predictor(F0Predictor): + def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100): + self.hop_length = hop_length + self.f0_min = f0_min + self.f0_max = f0_max + self.sampling_rate = sampling_rate + + def interpolate_f0(self, f0): + """ + 对F0进行插值处理 + """ + + data = np.reshape(f0, (f0.size, 1)) + + vuv_vector = np.zeros((data.size, 1), dtype=np.float32) + vuv_vector[data > 0.0] = 1.0 + vuv_vector[data <= 0.0] = 0.0 + + ip_data = data + + frame_number = data.size + last_value = 0.0 + for i in range(frame_number): + if data[i] <= 0.0: + j = i + 1 + for j in range(i + 1, frame_number): + if data[j] > 0.0: + break + if j < frame_number - 1: + if last_value > 0.0: + step = (data[j] - data[i - 1]) / float(j - i) + for k in range(i, j): + ip_data[k] = data[i - 1] + step * (k - i + 1) + else: + for k in range(i, j): + ip_data[k] = data[j] + else: + for k in range(i, frame_number): + ip_data[k] = last_value + else: + ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝 + last_value = data[i] + + return ip_data[:, 0], vuv_vector[:, 0] + + def resize_f0(self, x, target_len): + source = np.array(x) + source[source < 0.001] = np.nan + target = np.interp( + np.arange(0, len(source) * target_len, len(source)) / target_len, + np.arange(0, len(source)), + source, + ) + res = np.nan_to_num(target) + return res + + def compute_f0(self, wav, p_len=None): + if p_len is None: + p_len = wav.shape[0] // self.hop_length + f0, t = pyworld.dio( + wav.astype(np.double), + fs=self.sampling_rate, + f0_floor=self.f0_min, + f0_ceil=self.f0_max, + frame_period=1000 * self.hop_length / self.sampling_rate, + ) + f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate) + for index, pitch in enumerate(f0): + f0[index] = round(pitch, 1) + return self.interpolate_f0(self.resize_f0(f0, p_len))[0] + + def compute_f0_uv(self, wav, p_len=None): + if p_len is None: + p_len = wav.shape[0] // self.hop_length + f0, t = pyworld.dio( + wav.astype(np.double), + fs=self.sampling_rate, + f0_floor=self.f0_min, + f0_ceil=self.f0_max, + frame_period=1000 * self.hop_length / self.sampling_rate, + ) + f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate) + for index, pitch in enumerate(f0): + f0[index] = round(pitch, 1) + return self.interpolate_f0(self.resize_f0(f0, p_len)) diff --git a/lib/infer_pack/modules/F0Predictor/F0Predictor.py b/lib/infer_pack/modules/F0Predictor/F0Predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..f56e49e7f0e6eab3babf0711cae2933371b9f9cc --- /dev/null +++ b/lib/infer_pack/modules/F0Predictor/F0Predictor.py @@ -0,0 +1,16 @@ +class F0Predictor(object): + def compute_f0(self, wav, p_len): + """ + input: wav:[signal_length] + p_len:int + output: f0:[signal_length//hop_length] + """ + pass + + def compute_f0_uv(self, wav, p_len): + """ + input: wav:[signal_length] + p_len:int + output: f0:[signal_length//hop_length],uv:[signal_length//hop_length] + """ + pass diff --git a/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py b/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..b412ba2814e114ca7bb00b6fd6ef217f63d788a3 --- /dev/null +++ b/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py @@ -0,0 +1,86 @@ +from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor +import pyworld +import numpy as np + + +class HarvestF0Predictor(F0Predictor): + def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100): + self.hop_length = hop_length + self.f0_min = f0_min + self.f0_max = f0_max + self.sampling_rate = sampling_rate + + def interpolate_f0(self, f0): + """ + 对F0进行插值处理 + """ + + data = np.reshape(f0, (f0.size, 1)) + + vuv_vector = np.zeros((data.size, 1), dtype=np.float32) + vuv_vector[data > 0.0] = 1.0 + vuv_vector[data <= 0.0] = 0.0 + + ip_data = data + + frame_number = data.size + last_value = 0.0 + for i in range(frame_number): + if data[i] <= 0.0: + j = i + 1 + for j in range(i + 1, frame_number): + if data[j] > 0.0: + break + if j < frame_number - 1: + if last_value > 0.0: + step = (data[j] - data[i - 1]) / float(j - i) + for k in range(i, j): + ip_data[k] = data[i - 1] + step * (k - i + 1) + else: + for k in range(i, j): + ip_data[k] = data[j] + else: + for k in range(i, frame_number): + ip_data[k] = last_value + else: + ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝 + last_value = data[i] + + return ip_data[:, 0], vuv_vector[:, 0] + + def resize_f0(self, x, target_len): + source = np.array(x) + source[source < 0.001] = np.nan + target = np.interp( + np.arange(0, len(source) * target_len, len(source)) / target_len, + np.arange(0, len(source)), + source, + ) + res = np.nan_to_num(target) + return res + + def compute_f0(self, wav, p_len=None): + if p_len is None: + p_len = wav.shape[0] // self.hop_length + f0, t = pyworld.harvest( + wav.astype(np.double), + fs=self.hop_length, + f0_ceil=self.f0_max, + f0_floor=self.f0_min, + frame_period=1000 * self.hop_length / self.sampling_rate, + ) + f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs) + return self.interpolate_f0(self.resize_f0(f0, p_len))[0] + + def compute_f0_uv(self, wav, p_len=None): + if p_len is None: + p_len = wav.shape[0] // self.hop_length + f0, t = pyworld.harvest( + wav.astype(np.double), + fs=self.sampling_rate, + f0_floor=self.f0_min, + f0_ceil=self.f0_max, + frame_period=1000 * self.hop_length / self.sampling_rate, + ) + f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate) + return self.interpolate_f0(self.resize_f0(f0, p_len)) diff --git a/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py b/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..b2c592527a5966e6f8e79e8c52dc5b414246dcc6 --- /dev/null +++ b/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py @@ -0,0 +1,97 @@ +from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor +import parselmouth +import numpy as np + + +class PMF0Predictor(F0Predictor): + def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100): + self.hop_length = hop_length + self.f0_min = f0_min + self.f0_max = f0_max + self.sampling_rate = sampling_rate + + def interpolate_f0(self, f0): + """ + 对F0进行插值处理 + """ + + data = np.reshape(f0, (f0.size, 1)) + + vuv_vector = np.zeros((data.size, 1), dtype=np.float32) + vuv_vector[data > 0.0] = 1.0 + vuv_vector[data <= 0.0] = 0.0 + + ip_data = data + + frame_number = data.size + last_value = 0.0 + for i in range(frame_number): + if data[i] <= 0.0: + j = i + 1 + for j in range(i + 1, frame_number): + if data[j] > 0.0: + break + if j < frame_number - 1: + if last_value > 0.0: + step = (data[j] - data[i - 1]) / float(j - i) + for k in range(i, j): + ip_data[k] = data[i - 1] + step * (k - i + 1) + else: + for k in range(i, j): + ip_data[k] = data[j] + else: + for k in range(i, frame_number): + ip_data[k] = last_value + else: + ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝 + last_value = data[i] + + return ip_data[:, 0], vuv_vector[:, 0] + + def compute_f0(self, wav, p_len=None): + x = wav + if p_len is None: + p_len = x.shape[0] // self.hop_length + else: + assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error" + time_step = self.hop_length / self.sampling_rate * 1000 + f0 = ( + parselmouth.Sound(x, self.sampling_rate) + .to_pitch_ac( + time_step=time_step / 1000, + voicing_threshold=0.6, + pitch_floor=self.f0_min, + pitch_ceiling=self.f0_max, + ) + .selected_array["frequency"] + ) + + pad_size = (p_len - len(f0) + 1) // 2 + if pad_size > 0 or p_len - len(f0) - pad_size > 0: + f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant") + f0, uv = self.interpolate_f0(f0) + return f0 + + def compute_f0_uv(self, wav, p_len=None): + x = wav + if p_len is None: + p_len = x.shape[0] // self.hop_length + else: + assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error" + time_step = self.hop_length / self.sampling_rate * 1000 + f0 = ( + parselmouth.Sound(x, self.sampling_rate) + .to_pitch_ac( + time_step=time_step / 1000, + voicing_threshold=0.6, + pitch_floor=self.f0_min, + pitch_ceiling=self.f0_max, + ) + .selected_array["frequency"] + ) + + pad_size = (p_len - len(f0) + 1) // 2 + if pad_size > 0 or p_len - len(f0) - pad_size > 0: + f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant") + f0, uv = self.interpolate_f0(f0) + return f0, uv diff --git a/lib/infer_pack/modules/F0Predictor/__init__.py b/lib/infer_pack/modules/F0Predictor/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lib/infer_pack/onnx_inference.py b/lib/infer_pack/onnx_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..6517853be49e61c427cf7cd9b5ed203f6d5f367e --- /dev/null +++ b/lib/infer_pack/onnx_inference.py @@ -0,0 +1,145 @@ +import onnxruntime +import librosa +import numpy as np +import soundfile + + +class ContentVec: + def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None): + print("load model(s) from {}".format(vec_path)) + if device == "cpu" or device is None: + providers = ["CPUExecutionProvider"] + elif device == "cuda": + providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] + elif device == "dml": + providers = ["DmlExecutionProvider"] + else: + raise RuntimeError("Unsportted Device") + self.model = onnxruntime.InferenceSession(vec_path, providers=providers) + + def __call__(self, wav): + return self.forward(wav) + + def forward(self, wav): + feats = wav + if feats.ndim == 2: # double channels + feats = feats.mean(-1) + assert feats.ndim == 1, feats.ndim + feats = np.expand_dims(np.expand_dims(feats, 0), 0) + onnx_input = {self.model.get_inputs()[0].name: feats} + logits = self.model.run(None, onnx_input)[0] + return logits.transpose(0, 2, 1) + + +def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs): + if f0_predictor == "pm": + from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor + + f0_predictor_object = PMF0Predictor( + hop_length=hop_length, sampling_rate=sampling_rate + ) + elif f0_predictor == "harvest": + from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import ( + HarvestF0Predictor, + ) + + f0_predictor_object = HarvestF0Predictor( + hop_length=hop_length, sampling_rate=sampling_rate + ) + elif f0_predictor == "dio": + from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor + + f0_predictor_object = DioF0Predictor( + hop_length=hop_length, sampling_rate=sampling_rate + ) + else: + raise Exception("Unknown f0 predictor") + return f0_predictor_object + + +class OnnxRVC: + def __init__( + self, + model_path, + sr=40000, + hop_size=512, + vec_path="vec-768-layer-12", + device="cpu", + ): + vec_path = f"pretrained/{vec_path}.onnx" + self.vec_model = ContentVec(vec_path, device) + if device == "cpu" or device is None: + providers = ["CPUExecutionProvider"] + elif device == "cuda": + providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] + elif device == "dml": + providers = ["DmlExecutionProvider"] + else: + raise RuntimeError("Unsportted Device") + self.model = onnxruntime.InferenceSession(model_path, providers=providers) + self.sampling_rate = sr + self.hop_size = hop_size + + def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd): + onnx_input = { + self.model.get_inputs()[0].name: hubert, + self.model.get_inputs()[1].name: hubert_length, + self.model.get_inputs()[2].name: pitch, + self.model.get_inputs()[3].name: pitchf, + self.model.get_inputs()[4].name: ds, + self.model.get_inputs()[5].name: rnd, + } + return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16) + + def inference( + self, + raw_path, + sid, + f0_method="dio", + f0_up_key=0, + pad_time=0.5, + cr_threshold=0.02, + ): + f0_min = 50 + f0_max = 1100 + f0_mel_min = 1127 * np.log(1 + f0_min / 700) + f0_mel_max = 1127 * np.log(1 + f0_max / 700) + f0_predictor = get_f0_predictor( + f0_method, + hop_length=self.hop_size, + sampling_rate=self.sampling_rate, + threshold=cr_threshold, + ) + wav, sr = librosa.load(raw_path, sr=self.sampling_rate) + org_length = len(wav) + if org_length / sr > 50.0: + raise RuntimeError("Reached Max Length") + + wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000) + wav16k = wav16k + + hubert = self.vec_model(wav16k) + hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32) + hubert_length = hubert.shape[1] + + pitchf = f0_predictor.compute_f0(wav, hubert_length) + pitchf = pitchf * 2 ** (f0_up_key / 12) + pitch = pitchf.copy() + f0_mel = 1127 * np.log(1 + pitch / 700) + f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( + f0_mel_max - f0_mel_min + ) + 1 + f0_mel[f0_mel <= 1] = 1 + f0_mel[f0_mel > 255] = 255 + pitch = np.rint(f0_mel).astype(np.int64) + + pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32) + pitch = pitch.reshape(1, len(pitch)) + ds = np.array([sid]).astype(np.int64) + + rnd = np.random.randn(1, 192, hubert_length).astype(np.float32) + hubert_length = np.array([hubert_length]).astype(np.int64) + + out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze() + out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant") + return out_wav[0:org_length] diff --git a/lib/infer_pack/transforms.py b/lib/infer_pack/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..a11f799e023864ff7082c1f49c0cc18351a13b47 --- /dev/null +++ b/lib/infer_pack/transforms.py @@ -0,0 +1,209 @@ +import torch +from torch.nn import functional as F + +import numpy as np + + +DEFAULT_MIN_BIN_WIDTH = 1e-3 +DEFAULT_MIN_BIN_HEIGHT = 1e-3 +DEFAULT_MIN_DERIVATIVE = 1e-3 + + +def piecewise_rational_quadratic_transform( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails=None, + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if tails is None: + spline_fn = rational_quadratic_spline + spline_kwargs = {} + else: + spline_fn = unconstrained_rational_quadratic_spline + spline_kwargs = {"tails": tails, "tail_bound": tail_bound} + + outputs, logabsdet = spline_fn( + inputs=inputs, + unnormalized_widths=unnormalized_widths, + unnormalized_heights=unnormalized_heights, + unnormalized_derivatives=unnormalized_derivatives, + inverse=inverse, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + **spline_kwargs + ) + return outputs, logabsdet + + +def searchsorted(bin_locations, inputs, eps=1e-6): + bin_locations[..., -1] += eps + return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 + + +def unconstrained_rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails="linear", + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) + outside_interval_mask = ~inside_interval_mask + + outputs = torch.zeros_like(inputs) + logabsdet = torch.zeros_like(inputs) + + if tails == "linear": + unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) + constant = np.log(np.exp(1 - min_derivative) - 1) + unnormalized_derivatives[..., 0] = constant + unnormalized_derivatives[..., -1] = constant + + outputs[outside_interval_mask] = inputs[outside_interval_mask] + logabsdet[outside_interval_mask] = 0 + else: + raise RuntimeError("{} tails are not implemented.".format(tails)) + + ( + outputs[inside_interval_mask], + logabsdet[inside_interval_mask], + ) = rational_quadratic_spline( + inputs=inputs[inside_interval_mask], + unnormalized_widths=unnormalized_widths[inside_interval_mask, :], + unnormalized_heights=unnormalized_heights[inside_interval_mask, :], + unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], + inverse=inverse, + left=-tail_bound, + right=tail_bound, + bottom=-tail_bound, + top=tail_bound, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + ) + + return outputs, logabsdet + + +def rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + left=0.0, + right=1.0, + bottom=0.0, + top=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if torch.min(inputs) < left or torch.max(inputs) > right: + raise ValueError("Input to a transform is not within its domain") + + num_bins = unnormalized_widths.shape[-1] + + if min_bin_width * num_bins > 1.0: + raise ValueError("Minimal bin width too large for the number of bins") + if min_bin_height * num_bins > 1.0: + raise ValueError("Minimal bin height too large for the number of bins") + + widths = F.softmax(unnormalized_widths, dim=-1) + widths = min_bin_width + (1 - min_bin_width * num_bins) * widths + cumwidths = torch.cumsum(widths, dim=-1) + cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) + cumwidths = (right - left) * cumwidths + left + cumwidths[..., 0] = left + cumwidths[..., -1] = right + widths = cumwidths[..., 1:] - cumwidths[..., :-1] + + derivatives = min_derivative + F.softplus(unnormalized_derivatives) + + heights = F.softmax(unnormalized_heights, dim=-1) + heights = min_bin_height + (1 - min_bin_height * num_bins) * heights + cumheights = torch.cumsum(heights, dim=-1) + cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) + cumheights = (top - bottom) * cumheights + bottom + cumheights[..., 0] = bottom + cumheights[..., -1] = top + heights = cumheights[..., 1:] - cumheights[..., :-1] + + if inverse: + bin_idx = searchsorted(cumheights, inputs)[..., None] + else: + bin_idx = searchsorted(cumwidths, inputs)[..., None] + + input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] + input_bin_widths = widths.gather(-1, bin_idx)[..., 0] + + input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] + delta = heights / widths + input_delta = delta.gather(-1, bin_idx)[..., 0] + + input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] + input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] + + input_heights = heights.gather(-1, bin_idx)[..., 0] + + if inverse: + a = (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + input_heights * (input_delta - input_derivatives) + b = input_heights * input_derivatives - (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + c = -input_delta * (inputs - input_cumheights) + + discriminant = b.pow(2) - 4 * a * c + assert (discriminant >= 0).all() + + root = (2 * c) / (-b - torch.sqrt(discriminant)) + outputs = root * input_bin_widths + input_cumwidths + + theta_one_minus_theta = root * (1 - root) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta + ) + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * root.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - root).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, -logabsdet + else: + theta = (inputs - input_cumwidths) / input_bin_widths + theta_one_minus_theta = theta * (1 - theta) + + numerator = input_heights * ( + input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta + ) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + * theta_one_minus_theta + ) + outputs = input_cumheights + numerator / denominator + + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * theta.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - theta).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, logabsdet diff --git a/mygit.sh b/mygit.sh new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..3bba8c2a42bd5ecb0e7c709f71203f99607999be --- /dev/null +++ b/requirements.txt @@ -0,0 +1,9 @@ +edge_tts==6.1.7 +fairseq==0.12.2 +faiss_cpu==1.7.4 +gradio==3.38.0 +librosa==0.9.1 +numpy==1.23.5 +praat-parselmouth==0.4.3 +pyworld==0.3.4 +torchcrepe==0.0.20 diff --git a/rmvpe.pt b/rmvpe.pt new file mode 100644 index 0000000000000000000000000000000000000000..bae4def4f226bb41cc24f800dc463cdf08940e6b --- /dev/null +++ b/rmvpe.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a5ed4719f59085d1affc5d81354c70828c740584f2d24e782523345a6a278962 +size 181189687 diff --git a/rmvpe.py b/rmvpe.py new file mode 100644 index 0000000000000000000000000000000000000000..3ad346141340e03bdbaa20121e1ed435bb3da57a --- /dev/null +++ b/rmvpe.py @@ -0,0 +1,432 @@ +import sys, torch, numpy as np, traceback, pdb +import torch.nn as nn +from time import time as ttime +import torch.nn.functional as F + + +class BiGRU(nn.Module): + def __init__(self, input_features, hidden_features, num_layers): + super(BiGRU, self).__init__() + self.gru = nn.GRU( + input_features, + hidden_features, + num_layers=num_layers, + batch_first=True, + bidirectional=True, + ) + + def forward(self, x): + return self.gru(x)[0] + + +class ConvBlockRes(nn.Module): + def __init__(self, in_channels, out_channels, momentum=0.01): + super(ConvBlockRes, self).__init__() + self.conv = nn.Sequential( + nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1), + bias=False, + ), + nn.BatchNorm2d(out_channels, momentum=momentum), + nn.ReLU(), + nn.Conv2d( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1), + bias=False, + ), + nn.BatchNorm2d(out_channels, momentum=momentum), + nn.ReLU(), + ) + if in_channels != out_channels: + self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) + self.is_shortcut = True + else: + self.is_shortcut = False + + def forward(self, x): + if self.is_shortcut: + return self.conv(x) + self.shortcut(x) + else: + return self.conv(x) + x + + +class Encoder(nn.Module): + def __init__( + self, + in_channels, + in_size, + n_encoders, + kernel_size, + n_blocks, + out_channels=16, + momentum=0.01, + ): + super(Encoder, self).__init__() + self.n_encoders = n_encoders + self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) + self.layers = nn.ModuleList() + self.latent_channels = [] + for i in range(self.n_encoders): + self.layers.append( + ResEncoderBlock( + in_channels, out_channels, kernel_size, n_blocks, momentum=momentum + ) + ) + self.latent_channels.append([out_channels, in_size]) + in_channels = out_channels + out_channels *= 2 + in_size //= 2 + self.out_size = in_size + self.out_channel = out_channels + + def forward(self, x): + concat_tensors = [] + x = self.bn(x) + for i in range(self.n_encoders): + _, x = self.layers[i](x) + concat_tensors.append(_) + return x, concat_tensors + + +class ResEncoderBlock(nn.Module): + def __init__( + self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01 + ): + super(ResEncoderBlock, self).__init__() + self.n_blocks = n_blocks + self.conv = nn.ModuleList() + self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) + for i in range(n_blocks - 1): + self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) + self.kernel_size = kernel_size + if self.kernel_size is not None: + self.pool = nn.AvgPool2d(kernel_size=kernel_size) + + def forward(self, x): + for i in range(self.n_blocks): + x = self.conv[i](x) + if self.kernel_size is not None: + return x, self.pool(x) + else: + return x + + +class Intermediate(nn.Module): # + def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): + super(Intermediate, self).__init__() + self.n_inters = n_inters + self.layers = nn.ModuleList() + self.layers.append( + ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) + ) + for i in range(self.n_inters - 1): + self.layers.append( + ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) + ) + + def forward(self, x): + for i in range(self.n_inters): + x = self.layers[i](x) + return x + + +class ResDecoderBlock(nn.Module): + def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): + super(ResDecoderBlock, self).__init__() + out_padding = (0, 1) if stride == (1, 2) else (1, 1) + self.n_blocks = n_blocks + self.conv1 = nn.Sequential( + nn.ConvTranspose2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=(3, 3), + stride=stride, + padding=(1, 1), + output_padding=out_padding, + bias=False, + ), + nn.BatchNorm2d(out_channels, momentum=momentum), + nn.ReLU(), + ) + self.conv2 = nn.ModuleList() + self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) + for i in range(n_blocks - 1): + self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) + + def forward(self, x, concat_tensor): + x = self.conv1(x) + x = torch.cat((x, concat_tensor), dim=1) + for i in range(self.n_blocks): + x = self.conv2[i](x) + return x + + +class Decoder(nn.Module): + def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): + super(Decoder, self).__init__() + self.layers = nn.ModuleList() + self.n_decoders = n_decoders + for i in range(self.n_decoders): + out_channels = in_channels // 2 + self.layers.append( + ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) + ) + in_channels = out_channels + + def forward(self, x, concat_tensors): + for i in range(self.n_decoders): + x = self.layers[i](x, concat_tensors[-1 - i]) + return x + + +class DeepUnet(nn.Module): + def __init__( + self, + kernel_size, + n_blocks, + en_de_layers=5, + inter_layers=4, + in_channels=1, + en_out_channels=16, + ): + super(DeepUnet, self).__init__() + self.encoder = Encoder( + in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels + ) + self.intermediate = Intermediate( + self.encoder.out_channel // 2, + self.encoder.out_channel, + inter_layers, + n_blocks, + ) + self.decoder = Decoder( + self.encoder.out_channel, en_de_layers, kernel_size, n_blocks + ) + + def forward(self, x): + x, concat_tensors = self.encoder(x) + x = self.intermediate(x) + x = self.decoder(x, concat_tensors) + return x + + +class E2E(nn.Module): + def __init__( + self, + n_blocks, + n_gru, + kernel_size, + en_de_layers=5, + inter_layers=4, + in_channels=1, + en_out_channels=16, + ): + super(E2E, self).__init__() + self.unet = DeepUnet( + kernel_size, + n_blocks, + en_de_layers, + inter_layers, + in_channels, + en_out_channels, + ) + self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) + if n_gru: + self.fc = nn.Sequential( + BiGRU(3 * 128, 256, n_gru), + nn.Linear(512, 360), + nn.Dropout(0.25), + nn.Sigmoid(), + ) + else: + self.fc = nn.Sequential( + nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid() + ) + + def forward(self, mel): + mel = mel.transpose(-1, -2).unsqueeze(1) + x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) + x = self.fc(x) + return x + + +from librosa.filters import mel + + +class MelSpectrogram(torch.nn.Module): + def __init__( + self, + is_half, + n_mel_channels, + sampling_rate, + win_length, + hop_length, + n_fft=None, + mel_fmin=0, + mel_fmax=None, + clamp=1e-5, + ): + super().__init__() + n_fft = win_length if n_fft is None else n_fft + self.hann_window = {} + mel_basis = mel( + sr=sampling_rate, + n_fft=n_fft, + n_mels=n_mel_channels, + fmin=mel_fmin, + fmax=mel_fmax, + htk=True, + ) + mel_basis = torch.from_numpy(mel_basis).float() + self.register_buffer("mel_basis", mel_basis) + self.n_fft = win_length if n_fft is None else n_fft + self.hop_length = hop_length + self.win_length = win_length + self.sampling_rate = sampling_rate + self.n_mel_channels = n_mel_channels + self.clamp = clamp + self.is_half = is_half + + def forward(self, audio, keyshift=0, speed=1, center=True): + factor = 2 ** (keyshift / 12) + n_fft_new = int(np.round(self.n_fft * factor)) + win_length_new = int(np.round(self.win_length * factor)) + hop_length_new = int(np.round(self.hop_length * speed)) + keyshift_key = str(keyshift) + "_" + str(audio.device) + if keyshift_key not in self.hann_window: + self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to( + audio.device + ) + fft = torch.stft( + audio, + n_fft=n_fft_new, + hop_length=hop_length_new, + win_length=win_length_new, + window=self.hann_window[keyshift_key], + center=center, + return_complex=True, + ) + magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2)) + if keyshift != 0: + size = self.n_fft // 2 + 1 + resize = magnitude.size(1) + if resize < size: + magnitude = F.pad(magnitude, (0, 0, 0, size - resize)) + magnitude = magnitude[:, :size, :] * self.win_length / win_length_new + mel_output = torch.matmul(self.mel_basis, magnitude) + if self.is_half == True: + mel_output = mel_output.half() + log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp)) + return log_mel_spec + + +class RMVPE: + def __init__(self, model_path, is_half, device=None): + self.resample_kernel = {} + model = E2E(4, 1, (2, 2)) + ckpt = torch.load(model_path, map_location="cpu") + model.load_state_dict(ckpt) + model.eval() + if is_half == True: + model = model.half() + self.model = model + self.resample_kernel = {} + self.is_half = is_half + if device is None: + device = "cuda" if torch.cuda.is_available() else "cpu" + self.device = device + self.mel_extractor = MelSpectrogram( + is_half, 128, 16000, 1024, 160, None, 30, 8000 + ).to(device) + self.model = self.model.to(device) + cents_mapping = 20 * np.arange(360) + 1997.3794084376191 + self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368 + + def mel2hidden(self, mel): + with torch.no_grad(): + n_frames = mel.shape[-1] + mel = F.pad( + mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect" + ) + hidden = self.model(mel) + return hidden[:, :n_frames] + + def decode(self, hidden, thred=0.03): + cents_pred = self.to_local_average_cents(hidden, thred=thred) + f0 = 10 * (2 ** (cents_pred / 1200)) + f0[f0 == 10] = 0 + # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred]) + return f0 + + def infer_from_audio(self, audio, thred=0.03): + audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0) + # torch.cuda.synchronize() + # t0=ttime() + mel = self.mel_extractor(audio, center=True) + # torch.cuda.synchronize() + # t1=ttime() + hidden = self.mel2hidden(mel) + # torch.cuda.synchronize() + # t2=ttime() + hidden = hidden.squeeze(0).cpu().numpy() + if self.is_half == True: + hidden = hidden.astype("float32") + f0 = self.decode(hidden, thred=thred) + # torch.cuda.synchronize() + # t3=ttime() + # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0)) + return f0 + + def to_local_average_cents(self, salience, thred=0.05): + # t0 = ttime() + center = np.argmax(salience, axis=1) # 帧长#index + salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368 + # t1 = ttime() + center += 4 + todo_salience = [] + todo_cents_mapping = [] + starts = center - 4 + ends = center + 5 + for idx in range(salience.shape[0]): + todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) + todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) + # t2 = ttime() + todo_salience = np.array(todo_salience) # 帧长,9 + todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9 + product_sum = np.sum(todo_salience * todo_cents_mapping, 1) + weight_sum = np.sum(todo_salience, 1) # 帧长 + devided = product_sum / weight_sum # 帧长 + # t3 = ttime() + maxx = np.max(salience, axis=1) # 帧长 + devided[maxx <= thred] = 0 + # t4 = ttime() + # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) + return devided + + +# if __name__ == '__main__': +# audio, sampling_rate = sf.read("卢本伟语录~1.wav") +# if len(audio.shape) > 1: +# audio = librosa.to_mono(audio.transpose(1, 0)) +# audio_bak = audio.copy() +# if sampling_rate != 16000: +# audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) +# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt" +# thred = 0.03 # 0.01 +# device = 'cuda' if torch.cuda.is_available() else 'cpu' +# rmvpe = RMVPE(model_path,is_half=False, device=device) +# t0=ttime() +# f0 = rmvpe.infer_from_audio(audio, thred=thred) +# f0 = rmvpe.infer_from_audio(audio, thred=thred) +# f0 = rmvpe.infer_from_audio(audio, thred=thred) +# f0 = rmvpe.infer_from_audio(audio, thred=thred) +# f0 = rmvpe.infer_from_audio(audio, thred=thred) +# t1=ttime() +# print(f0.shape,t1-t0) diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..ed2aacd1866379563006e3cf4dd40472f7ab4692 --- /dev/null +++ b/vc_infer_pipeline.py @@ -0,0 +1,451 @@ +import os +import sys +import traceback +from functools import lru_cache +from time import time as ttime + +import faiss +import librosa +import numpy as np +import parselmouth +import pyworld +import torch +import torch.nn.functional as F +import torchcrepe +from scipy import signal + +now_dir = os.getcwd() +sys.path.append(now_dir) + +bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) + +input_audio_path2wav = {} + + +@lru_cache +def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period): + audio = input_audio_path2wav[input_audio_path] + f0, t = pyworld.harvest( + audio, + fs=fs, + f0_ceil=f0max, + f0_floor=f0min, + frame_period=frame_period, + ) + f0 = pyworld.stonemask(audio, f0, t, fs) + return f0 + + +def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比 + # print(data1.max(),data2.max()) + rms1 = librosa.feature.rms( + y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2 + ) # 每半秒一个点 + rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2) + rms1 = torch.from_numpy(rms1) + rms1 = F.interpolate( + rms1.unsqueeze(0), size=data2.shape[0], mode="linear" + ).squeeze() + rms2 = torch.from_numpy(rms2) + rms2 = F.interpolate( + rms2.unsqueeze(0), size=data2.shape[0], mode="linear" + ).squeeze() + rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6) + data2 *= ( + torch.pow(rms1, torch.tensor(1 - rate)) + * torch.pow(rms2, torch.tensor(rate - 1)) + ).numpy() + return data2 + + +class VC(object): + def __init__(self, tgt_sr, config): + self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( + config.x_pad, + config.x_query, + config.x_center, + config.x_max, + config.is_half, + ) + self.sr = 16000 # hubert输入采样率 + self.window = 160 # 每帧点数 + self.t_pad = self.sr * self.x_pad # 每条前后pad时间 + self.t_pad_tgt = tgt_sr * self.x_pad + self.t_pad2 = self.t_pad * 2 + self.t_query = self.sr * self.x_query # 查询切点前后查询时间 + self.t_center = self.sr * self.x_center # 查询切点位置 + self.t_max = self.sr * self.x_max # 免查询时长阈值 + self.device = config.device + + def get_f0( + self, + input_audio_path, + x, + p_len, + f0_up_key, + f0_method, + filter_radius, + inp_f0=None, + ): + global input_audio_path2wav + time_step = self.window / self.sr * 1000 + f0_min = 50 + f0_max = 1100 + f0_mel_min = 1127 * np.log(1 + f0_min / 700) + f0_mel_max = 1127 * np.log(1 + f0_max / 700) + if f0_method == "pm": + f0 = ( + parselmouth.Sound(x, self.sr) + .to_pitch_ac( + time_step=time_step / 1000, + voicing_threshold=0.6, + pitch_floor=f0_min, + pitch_ceiling=f0_max, + ) + .selected_array["frequency"] + ) + pad_size = (p_len - len(f0) + 1) // 2 + if pad_size > 0 or p_len - len(f0) - pad_size > 0: + f0 = np.pad( + f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" + ) + elif f0_method == "harvest": + input_audio_path2wav[input_audio_path] = x.astype(np.double) + f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) + if filter_radius > 2: + f0 = signal.medfilt(f0, 3) + elif f0_method == "crepe": + model = "full" + # Pick a batch size that doesn't cause memory errors on your gpu + batch_size = 512 + # Compute pitch using first gpu + audio = torch.tensor(np.copy(x))[None].float() + f0, pd = torchcrepe.predict( + audio, + self.sr, + self.window, + f0_min, + f0_max, + model, + batch_size=batch_size, + device=self.device, + return_periodicity=True, + ) + pd = torchcrepe.filter.median(pd, 3) + f0 = torchcrepe.filter.mean(f0, 3) + f0[pd < 0.1] = 0 + f0 = f0[0].cpu().numpy() + elif f0_method == "rmvpe": + if hasattr(self, "model_rmvpe") == False: + from rmvpe import RMVPE + + print("loading rmvpe model") + self.model_rmvpe = RMVPE( + "rmvpe.pt", is_half=self.is_half, device=self.device + ) + f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) + f0 *= pow(2, f0_up_key / 12) + # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) + tf0 = self.sr // self.window # 每秒f0点数 + if inp_f0 is not None: + delta_t = np.round( + (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 + ).astype("int16") + replace_f0 = np.interp( + list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] + ) + shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] + f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ + :shape + ] + # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) + f0bak = f0.copy() + f0_mel = 1127 * np.log(1 + f0 / 700) + f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( + f0_mel_max - f0_mel_min + ) + 1 + f0_mel[f0_mel <= 1] = 1 + f0_mel[f0_mel > 255] = 255 + f0_coarse = np.rint(f0_mel).astype(np.int) + return f0_coarse, f0bak # 1-0 + + def vc( + self, + model, + net_g, + sid, + audio0, + pitch, + pitchf, + times, + index, + big_npy, + index_rate, + version, + protect, + ): # ,file_index,file_big_npy + feats = torch.from_numpy(audio0) + if self.is_half: + feats = feats.half() + else: + feats = feats.float() + if feats.dim() == 2: # double channels + feats = feats.mean(-1) + assert feats.dim() == 1, feats.dim() + feats = feats.view(1, -1) + padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) + + inputs = { + "source": feats.to(self.device), + "padding_mask": padding_mask, + "output_layer": 9 if version == "v1" else 12, + } + t0 = ttime() + with torch.no_grad(): + logits = model.extract_features(**inputs) + feats = model.final_proj(logits[0]) if version == "v1" else logits[0] + if protect < 0.5 and pitch != None and pitchf != None: + feats0 = feats.clone() + if ( + isinstance(index, type(None)) == False + and isinstance(big_npy, type(None)) == False + and index_rate != 0 + ): + npy = feats[0].cpu().numpy() + if self.is_half: + npy = npy.astype("float32") + + # _, I = index.search(npy, 1) + # npy = big_npy[I.squeeze()] + + score, ix = index.search(npy, k=8) + weight = np.square(1 / score) + weight /= weight.sum(axis=1, keepdims=True) + npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) + + if self.is_half: + npy = npy.astype("float16") + feats = ( + torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + + (1 - index_rate) * feats + ) + + feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) + if protect < 0.5 and pitch != None and pitchf != None: + feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute( + 0, 2, 1 + ) + t1 = ttime() + p_len = audio0.shape[0] // self.window + if feats.shape[1] < p_len: + p_len = feats.shape[1] + if pitch != None and pitchf != None: + pitch = pitch[:, :p_len] + pitchf = pitchf[:, :p_len] + + if protect < 0.5 and pitch != None and pitchf != None: + pitchff = pitchf.clone() + pitchff[pitchf > 0] = 1 + pitchff[pitchf < 1] = protect + pitchff = pitchff.unsqueeze(-1) + feats = feats * pitchff + feats0 * (1 - pitchff) + feats = feats.to(feats0.dtype) + p_len = torch.tensor([p_len], device=self.device).long() + with torch.no_grad(): + if pitch != None and pitchf != None: + audio1 = ( + (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]) + .data.cpu() + .float() + .numpy() + ) + else: + audio1 = ( + (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy() + ) + del feats, p_len, padding_mask + if torch.cuda.is_available(): + torch.cuda.empty_cache() + t2 = ttime() + times[0] += t1 - t0 + times[2] += t2 - t1 + return audio1 + + def pipeline( + self, + model, + net_g, + sid, + audio, + input_audio_path, + times, + f0_up_key, + f0_method, + file_index, + # file_big_npy, + index_rate, + if_f0, + filter_radius, + tgt_sr, + resample_sr, + rms_mix_rate, + version, + protect, + f0_file=None, + ): + if ( + file_index != "" + # and file_big_npy != "" + # and os.path.exists(file_big_npy) == True + and os.path.exists(file_index) == True + and index_rate != 0 + ): + try: + index = faiss.read_index(file_index) + # big_npy = np.load(file_big_npy) + big_npy = index.reconstruct_n(0, index.ntotal) + except: + traceback.print_exc() + index = big_npy = None + else: + index = big_npy = None + audio = signal.filtfilt(bh, ah, audio) + audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") + opt_ts = [] + if audio_pad.shape[0] > self.t_max: + audio_sum = np.zeros_like(audio) + for i in range(self.window): + audio_sum += audio_pad[i : i - self.window] + for t in range(self.t_center, audio.shape[0], self.t_center): + opt_ts.append( + t + - self.t_query + + np.where( + np.abs(audio_sum[t - self.t_query : t + self.t_query]) + == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() + )[0][0] + ) + s = 0 + audio_opt = [] + t = None + t1 = ttime() + audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") + p_len = audio_pad.shape[0] // self.window + inp_f0 = None + if hasattr(f0_file, "name") == True: + try: + with open(f0_file.name, "r") as f: + lines = f.read().strip("\n").split("\n") + inp_f0 = [] + for line in lines: + inp_f0.append([float(i) for i in line.split(",")]) + inp_f0 = np.array(inp_f0, dtype="float32") + except: + traceback.print_exc() + sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() + pitch, pitchf = None, None + if if_f0 == 1: + pitch, pitchf = self.get_f0( + input_audio_path, + audio_pad, + p_len, + f0_up_key, + f0_method, + filter_radius, + inp_f0, + ) + pitch = pitch[:p_len] + pitchf = pitchf[:p_len] + if self.device == "mps": + pitchf = pitchf.astype(np.float32) + pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() + pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() + t2 = ttime() + times[1] += t2 - t1 + for t in opt_ts: + t = t // self.window * self.window + if if_f0 == 1: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[s : t + self.t_pad2 + self.window], + pitch[:, s // self.window : (t + self.t_pad2) // self.window], + pitchf[:, s // self.window : (t + self.t_pad2) // self.window], + times, + index, + big_npy, + index_rate, + version, + protect, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + else: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[s : t + self.t_pad2 + self.window], + None, + None, + times, + index, + big_npy, + index_rate, + version, + protect, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + s = t + if if_f0 == 1: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[t:], + pitch[:, t // self.window :] if t is not None else pitch, + pitchf[:, t // self.window :] if t is not None else pitchf, + times, + index, + big_npy, + index_rate, + version, + protect, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + else: + audio_opt.append( + self.vc( + model, + net_g, + sid, + audio_pad[t:], + None, + None, + times, + index, + big_npy, + index_rate, + version, + protect, + )[self.t_pad_tgt : -self.t_pad_tgt] + ) + audio_opt = np.concatenate(audio_opt) + if rms_mix_rate != 1: + audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate) + if resample_sr >= 16000 and tgt_sr != resample_sr: + audio_opt = librosa.resample( + audio_opt, orig_sr=tgt_sr, target_sr=resample_sr + ) + audio_max = np.abs(audio_opt).max() / 0.99 + max_int16 = 32768 + if audio_max > 1: + max_int16 /= audio_max + audio_opt = (audio_opt * max_int16).astype(np.int16) + del pitch, pitchf, sid + if torch.cuda.is_available(): + torch.cuda.empty_cache() + return audio_opt diff --git a/weights/A/A.index b/weights/A/A.index new file mode 100644 index 0000000000000000000000000000000000000000..3d71b6b11e69c2d5414dff17951c4311cd0471ab --- /dev/null +++ b/weights/A/A.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:53ac3fd8f39f5f43f601543b7da9dc06e9ed3a0bd018f36529ffa753d857a137 +size 502751619 diff --git a/weights/A/A_e200.pth b/weights/A/A_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..98c71bdbc4a250841b5c0b2ac9f69c7deac75b00 --- /dev/null +++ b/weights/A/A_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ef7903eca213294021eb2c621333928b35d0715b9278c6135ee677775592bafd +size 55231605 diff --git a/weights/AA/AA.index b/weights/AA/AA.index new file mode 100644 index 0000000000000000000000000000000000000000..1cd74c28ec9b506c234e7504dd96f12ca9c3ef27 --- /dev/null +++ b/weights/AA/AA.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bf7a4ec5d4d05cb4f693442778a06d996385282cbf40df9f68584228feb4b23b +size 537201419 diff --git a/weights/AA/AA_e250.pth b/weights/AA/AA_e250.pth new file mode 100644 index 0000000000000000000000000000000000000000..01e9b42b15a1e6a4dfb595f9a2b3a50c63a2e6ad --- /dev/null +++ b/weights/AA/AA_e250.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:50748863c8023dd1f61233a81d347238fe602b79d965afefd3bcde4bb5362828 +size 55232982 diff --git a/weights/B/B.index b/weights/B/B.index new file mode 100644 index 0000000000000000000000000000000000000000..c24509b5bddf59e44bf8c226540e8db95c81e2ac --- /dev/null +++ b/weights/B/B.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:52d64f50ebed5c8d9840ed0d2b734f61460bff7686399d04efb2dcc1e35c31dd +size 555006899 diff --git a/weights/B/B.pth b/weights/B/B.pth new file mode 100644 index 0000000000000000000000000000000000000000..023dd291e4fc0f40fa1b9fba950e1fc79ae3262e --- /dev/null +++ b/weights/B/B.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c00c78133e60e66e918d2077ccf50dd95e2cdab3eb41b33801d61fbb82c52be0 +size 55220092 diff --git a/weights/BB/BB.index b/weights/BB/BB.index new file mode 100644 index 0000000000000000000000000000000000000000..309b9d004df417bf4b0333f5a892319a3eb3de73 --- /dev/null +++ b/weights/BB/BB.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:91d7e8ef0476e9ca8fc5c17341621d5f2b97199698ffcb84d91a31fda4111219 +size 498698339 diff --git a/weights/BB/BB_e300.pth b/weights/BB/BB_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..8bb110d6b4e54094c1c38f909f7fffffb84a0d23 --- /dev/null +++ b/weights/BB/BB_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6a1378f9ab637e9b5308ff8617735934a12c0e9d99fc24db586e0c8527d5a80 +size 55232523 diff --git a/weights/C/C.index b/weights/C/C.index new file mode 100644 index 0000000000000000000000000000000000000000..57312c5401308e92fcb18744bd13ace6a84bf169 --- /dev/null +++ b/weights/C/C.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d23b9ade976612ac139c33f7f356df9713b0ba544edf3820c01f80cf6978fcc +size 523615539 diff --git a/weights/C/C_e250.pth b/weights/C/C_e250.pth new file mode 100644 index 0000000000000000000000000000000000000000..70e8b76a83732c48a671d38de457b85abeeaf93b --- /dev/null +++ b/weights/C/C_e250.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e49f075933d6f801ebf3003395b270a9f57fdac1420d911ae334867a9392853b +size 55233900 diff --git a/weights/CC/CC.index b/weights/CC/CC.index new file mode 100644 index 0000000000000000000000000000000000000000..32012b53fd1e0b79d56b047e6bcb1935b2add3d2 --- /dev/null +++ b/weights/CC/CC.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:20c6154bd716b02069708ddd25ec54083d2d517ccaee1a67a7bd292ea1d6b631 +size 466130419 diff --git a/weights/CC/CC_e200.pth b/weights/CC/CC_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..a426a7ca4742455e160dfeec17eac4d856aa7ea2 --- /dev/null +++ b/weights/CC/CC_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d863a2f89a32575975494011f2dd4e93550722522251c2fcc69e0313b3428795 +size 55232982 diff --git a/weights/D/D.index b/weights/D/D.index new file mode 100644 index 0000000000000000000000000000000000000000..ec6b2df676d0ba0aea799f35e003d82695be0535 --- /dev/null +++ b/weights/D/D.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a7912aa4f47471a3d133425416dcb157541f5b68473644589be7f5207ba12cbd +size 454130739 diff --git a/weights/D/D.pth b/weights/D/D.pth new file mode 100644 index 0000000000000000000000000000000000000000..cc240b66bc49d851b2395deb8e41c2e0a838fac8 --- /dev/null +++ b/weights/D/D.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bc0191b5447a8a1e884198b9465db54fb4da91b07f25a684d43f39688a6c8343 +size 55232523 diff --git a/weights/DD/DD.index b/weights/DD/DD.index new file mode 100644 index 0000000000000000000000000000000000000000..a6a260d7494462f6f7d5bbb50fdb4164ff480016 --- /dev/null +++ b/weights/DD/DD.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f902cd6e3d87542ef3d9d0d942c67d1be2eb0a7159d84219369652a697fcf595 +size 438225619 diff --git a/weights/DD/DD_e200.pth b/weights/DD/DD_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..add34bb1e09958f8dd51b182c9936d2009c96647 --- /dev/null +++ b/weights/DD/DD_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:df285d86be7175af985455d2529db17a6719c3084ce17c03dd47a7808062ebfe +size 55232523 diff --git a/weights/E/E.index b/weights/E/E.index new file mode 100644 index 0000000000000000000000000000000000000000..386186cd873b660ee0989bbdc8a697bfa7291a4a --- /dev/null +++ b/weights/E/E.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7696dcf139d2cb651d2b5b90a59c821547f9e4da60bba3fddcabb2ff001ab499 +size 522666899 diff --git a/weights/E/E.pth b/weights/E/E.pth new file mode 100644 index 0000000000000000000000000000000000000000..d795cb8e22738f08c3733f0aa4c725e052a3417c --- /dev/null +++ b/weights/E/E.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ebb0c306d9a2bd62219642d285dc332b015c54c41a7786ef8683d49ef3403449 +size 55235736 diff --git a/weights/EE/EE.index b/weights/EE/EE.index new file mode 100644 index 0000000000000000000000000000000000000000..d552baf8a66ea3fe8841fc6c160e315f905ad084 --- /dev/null +++ b/weights/EE/EE.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:03383ab3ced21b7dbe6ee74b3713d2bfc277644b834e5510613da61faca098a7 +size 508825379 diff --git a/weights/EE/EE_e200.pth b/weights/EE/EE_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..1c2a713858887626b40962837930eb6adea15c51 --- /dev/null +++ b/weights/EE/EE_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d3f4c706781548120402281d259c5c912dc4d9846a6a81856ef2c4332d6ccb6d +size 55231605 diff --git a/weights/F/F.index b/weights/F/F.index new file mode 100644 index 0000000000000000000000000000000000000000..926984cfea9ce6f83a0410e7a7d86f3eb4fb9ef3 --- /dev/null +++ b/weights/F/F.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:30377ff78bd29cd8aa92fb81545e94fd6328d631cfc813406fdd11ec0e677c1e +size 553922739 diff --git a/weights/F/F.pth b/weights/F/F.pth new file mode 100644 index 0000000000000000000000000000000000000000..b582094b3900e5d1ea54ad211f1e8c9acc2b3106 --- /dev/null +++ b/weights/F/F.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5e2dba6a9eb4cd38d5d875dbbee52dc462378f2187012f9519f1347a6fd55040 +size 55232064 diff --git a/weights/FF/FF.index b/weights/FF/FF.index new file mode 100644 index 0000000000000000000000000000000000000000..df2b0b400ccda7c4b6e332cba2f4c46f99164164 --- /dev/null +++ b/weights/FF/FF.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:586dd540bc384163e2107df8b48c2a1d21cc1e89b5eef1c050d0dc12544ebd24 +size 508489659 diff --git a/weights/FF/FF_e300.pth b/weights/FF/FF_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..86fc837028371cbd3dfde3a4c00290714cfebc00 --- /dev/null +++ b/weights/FF/FF_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3f1f037b3c249418806317a14dd12d5fcabef908a52bc2f1ba2c83ca34569d49 +size 55232064 diff --git a/weights/G/G.index b/weights/G/G.index new file mode 100644 index 0000000000000000000000000000000000000000..ed1d88a3f8c46a0880c6a98a812f506b2d30d338 --- /dev/null +++ b/weights/G/G.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ec395d5c1cc6897a4422a692518ba2abcb0988177cd9ba226f7714645e66b126 +size 343771259 diff --git a/weights/G/G.pth b/weights/G/G.pth new file mode 100644 index 0000000000000000000000000000000000000000..3845cd80fad798b3b30131267c069a64f0cf076a --- /dev/null +++ b/weights/G/G.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23ed8ea741b0452027031fcc6b11c325acb7a1415685b07db650aff5558253a0 +size 55232064 diff --git a/weights/GG/GG.index b/weights/GG/GG.index new file mode 100644 index 0000000000000000000000000000000000000000..15ac97ee0fd66307aa70bf582dbf818838a80669 --- /dev/null +++ b/weights/GG/GG.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2fa343b60596b0ebefb2d5f97f376b1162dbfeeda14dbabc8ee1b78ed84c60a7 +size 546050259 diff --git a/weights/GG/GG_e200.pth b/weights/GG/GG_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..de1ec515229bc205aabd48baedd343d6bd832cd9 --- /dev/null +++ b/weights/GG/GG_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:435699252306f86661bd5ce4475d371cae2d9268cb6a216b4bf88637af0fa945 +size 55232982 diff --git a/weights/H/H.index b/weights/H/H.index new file mode 100644 index 0000000000000000000000000000000000000000..14465129c14e0e28ec1ab6b334a10ecfaedcc1e9 --- /dev/null +++ b/weights/H/H.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2893838d61e945916a1c63d4c20f27b1499076d7b87ddbc28f24299c918f3b63 +size 450961419 diff --git a/weights/H/H.pth b/weights/H/H.pth new file mode 100644 index 0000000000000000000000000000000000000000..d23229029d80ce8d002d637a33c0108c37fb9d08 --- /dev/null +++ b/weights/H/H.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77812172646456b4de74798c5e1ac990fff6d251fc536b827f5959c586d38cdf +size 55231146 diff --git a/weights/HH/HH.index b/weights/HH/HH.index new file mode 100644 index 0000000000000000000000000000000000000000..40265a50fe0f17caee533d8fb9aef8a503b5e0cf --- /dev/null +++ b/weights/HH/HH.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d8f7644339cce97f0745ddb7638647736ad1c20d988b892b5bfe18845786a2fe +size 479057179 diff --git a/weights/HH/HH_e300.pth b/weights/HH/HH_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..a7ba388bf3153cff5c3e8709b27727611c962ce7 --- /dev/null +++ b/weights/HH/HH_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5effdc001f41e1fb44e42fd3b8f7f31c69fe996894f873d0b4a9e51132ab1e1c +size 55233441 diff --git a/weights/I/I.index b/weights/I/I.index new file mode 100644 index 0000000000000000000000000000000000000000..c614c3161c24513b852282742538c55253cc8da5 --- /dev/null +++ b/weights/I/I.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5af5587479de72025ddb2d86a3c003cb79a6b77921433fc9214c16b3028be3c1 +size 499345139 diff --git a/weights/I/I.pth b/weights/I/I.pth new file mode 100644 index 0000000000000000000000000000000000000000..fd1b395fa60059a9b6b754d195a005fc4020bc1e --- /dev/null +++ b/weights/I/I.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e4f84d04fdd502c539a01b11a7032c408caee937315cad2760abef222ce1702f +size 55234818 diff --git a/weights/II/II.index b/weights/II/II.index new file mode 100644 index 0000000000000000000000000000000000000000..e27241e106b6f594190f1d26730892e2f937cec1 --- /dev/null +++ b/weights/II/II.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e77cf99256e542f125210fecea3ef10fbe1e86e1b23bbd4322524ad1945e99bd +size 536616219 diff --git a/weights/II/II_e200.pth b/weights/II/II_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..3ae4bc77bad229a536be54bf92e949eb604f18c2 --- /dev/null +++ b/weights/II/II_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ef43fd3a692f844d7a7871219c017d502386cad40412a7d6109ce412dfa722f6 +size 55234359 diff --git a/weights/J/J.index b/weights/J/J.index new file mode 100644 index 0000000000000000000000000000000000000000..6a13d62241d6c2e394b63055e62728a2047aab58 --- /dev/null +++ b/weights/J/J.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5349039bc3929139868954faaa468ec07e211436b2e148146659e42609143eec +size 465791619 diff --git a/weights/J/J.pth b/weights/J/J.pth new file mode 100644 index 0000000000000000000000000000000000000000..c92a35bf8facfcccef80c8df47954406ba266f39 --- /dev/null +++ b/weights/J/J.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f0d926e21ad38569b40cf9779a3ce449b2dcd9b555c716b59df987bef57f260 +size 55232064 diff --git a/weights/JJ/JJ.index b/weights/JJ/JJ.index new file mode 100644 index 0000000000000000000000000000000000000000..9e7f3c62ce22792defbee9d1f4d8e89459b21f9c --- /dev/null +++ b/weights/JJ/JJ.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3274fa1d622573b14a3b8cd768627457f27338e5a1ca06395f96fa6073e3499d +size 516140379 diff --git a/weights/JJ/JJ_e100.pth b/weights/JJ/JJ_e100.pth new file mode 100644 index 0000000000000000000000000000000000000000..1f831e20457a1ead0d7391d443a75f84f07d314e --- /dev/null +++ b/weights/JJ/JJ_e100.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c38f946d2c33d182e0b2915dfbd968b79b55a229b4fbf62be8e031dfa26e584 +size 55231605 diff --git a/weights/K/K.index b/weights/K/K.index new file mode 100644 index 0000000000000000000000000000000000000000..063d622096ed1d14041e47c07981b51cf6a6094d --- /dev/null +++ b/weights/K/K.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c9fc5f733770bada5b06f424b037846adf23c18d3feec9528e640ab745eceb9b +size 528740659 diff --git a/weights/K/K.pth b/weights/K/K.pth new file mode 100644 index 0000000000000000000000000000000000000000..1b1f0cadaaa922912978b9e8b3f796d66fe8b407 --- /dev/null +++ b/weights/K/K.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:65dad1261c81f1f2af041614d3401c999dbf1d893930a299ce723cd24605f5dc +size 55231605 diff --git a/weights/KK/KK.index b/weights/KK/KK.index new file mode 100644 index 0000000000000000000000000000000000000000..14be64ae6d7a1bc8f460740adb2215dbeb86f097 --- /dev/null +++ b/weights/KK/KK.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8968847719ba9cfc2157c12887fcc511ae9999b909e7d7075f83e3c43f643fbf +size 460718859 diff --git a/weights/KK/KK_e300.pth b/weights/KK/KK_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..c2f8df6271e88e1e828a029b04b2be023b4371cc --- /dev/null +++ b/weights/KK/KK_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:abc348081bb58e6322a17e8c60fe94405a414aaa3f4fdcd5d34cdc0e7bd439bc +size 55232064 diff --git a/weights/L/L.index b/weights/L/L.index new file mode 100644 index 0000000000000000000000000000000000000000..956e8bd63f6c77896e957e6ce7c3d559e2daaee7 --- /dev/null +++ b/weights/L/L.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c908c3e9e11f28b33a51c41a0285a78ff8cab525888e6c3528b8e0f323f1f172 +size 495698419 diff --git a/weights/L/L.pth b/weights/L/L.pth new file mode 100644 index 0000000000000000000000000000000000000000..f13b8a125101ef22d9b9b130b1ae1c38a7166bae --- /dev/null +++ b/weights/L/L.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d983117211dc38185a56adb13757a0859ceac09d53c2c268b6cd223da2b757be +size 55232064 diff --git a/weights/LL/LL.index b/weights/LL/LL.index new file mode 100644 index 0000000000000000000000000000000000000000..f00b541b5fadd03787961cdd8b069f78a9de5efb --- /dev/null +++ b/weights/LL/LL.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c2784aee5c9116e930a74648ed3b78361180a7ad74e0b06635a9822fd92d5b3 +size 557797379 diff --git a/weights/LL/LL_e300.pth b/weights/LL/LL_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..2da5ef5322a4f2959f0b7165fc5eb3f4f1ef71d5 --- /dev/null +++ b/weights/LL/LL_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac8c4861bb71803b990b0c112f3c2976c2dbec8e682608b6af865613d28c7a7d +size 55232523 diff --git a/weights/M/M.index b/weights/M/M.index new file mode 100644 index 0000000000000000000000000000000000000000..dad91c967fe6a642dff876fb8d29baeb03b0e7c7 --- /dev/null +++ b/weights/M/M.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:41f3b3d2434717d44d44d537ac4c2931e81de7ee8b1e589bd53faa070ad76941 +size 383798939 diff --git a/weights/M/M.pth b/weights/M/M.pth new file mode 100644 index 0000000000000000000000000000000000000000..9c3be7273a0037619bd863d38202ff997eeb2e62 --- /dev/null +++ b/weights/M/M.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c97a312b06f108d689ac1a7c07245de6a754eb206ac517c3bc8576145499819 +size 55234359 diff --git a/weights/MM/MM.index b/weights/MM/MM.index new file mode 100644 index 0000000000000000000000000000000000000000..c3db6709f1b07881acda14da5724e331dc5cff56 --- /dev/null +++ b/weights/MM/MM.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e6280c0d89fe9e7c2794d762411ebe469b13d53d6b2878c2fd90890e76676d21 +size 514717419 diff --git a/weights/MM/MM_e200.pth b/weights/MM/MM_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..59f6f03b250660f0245399d82b2523538b53ead7 --- /dev/null +++ b/weights/MM/MM_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4a417f73dfa2bb642e9fae0ff334d92ba0b3a3542f4519b0b5b996be3c8be08 +size 55232523 diff --git a/weights/N/N.index b/weights/N/N.index new file mode 100644 index 0000000000000000000000000000000000000000..04d2ed680892373c4f9362926557b341e6d7ec64 --- /dev/null +++ b/weights/N/N.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5805bd5ce3634d4aa397c1ebac7576bb286f1e414d7bfa50db7c6a4c670b21dc +size 292212059 diff --git a/weights/N/N.pth b/weights/N/N.pth new file mode 100644 index 0000000000000000000000000000000000000000..9e849f61e49cb372f38d106c4113fa5f2a18aa5d --- /dev/null +++ b/weights/N/N.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:94eb69570f3437559705191bd0b205a76aed1e8236a9ca6f2cb6b98be8324b3d +size 55230687 diff --git a/weights/NN/NN.index b/weights/NN/NN.index new file mode 100644 index 0000000000000000000000000000000000000000..85df84b1b65964673b2820a0dd01762d6f0ddde4 --- /dev/null +++ b/weights/NN/NN.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5561f26f84333dd9f35916fde54f2b17e6715c9356ebe420f49838aaac4e3f66 +size 541969259 diff --git a/weights/NN/NN_e200.pth b/weights/NN/NN_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..b9eaa427be80303830ef9c8e48677415ad90f147 --- /dev/null +++ b/weights/NN/NN_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39cfe8f11def648549149c21f68812698b54a7f02bcd146f69e826a2ddcbef56 +size 55233441 diff --git a/weights/O/O.index b/weights/O/O.index new file mode 100644 index 0000000000000000000000000000000000000000..15de1e405035f8375cf1c70e81bee746c2994018 --- /dev/null +++ b/weights/O/O.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e6ba34149c9876dd224426ff30d26e3a426e65c5d7317e53d8932fd96cb3564 +size 512345819 diff --git a/weights/O/O.pth b/weights/O/O.pth new file mode 100644 index 0000000000000000000000000000000000000000..fa3474cbebe4528c31079eccb354316e4522e35c --- /dev/null +++ b/weights/O/O.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cb7fd930d67971ac82706f0aaef5e9d176fe31ee850d88287aa3f3a902b78157 +size 55235277 diff --git a/weights/OO/OO.index b/weights/OO/OO.index new file mode 100644 index 0000000000000000000000000000000000000000..0e3f5d1a31355c6690608cac2f9b19f20b5250e0 --- /dev/null +++ b/weights/OO/OO.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba22d1597008bdf9f3b44c52974c666763ce2ec1072de89acac05e27f068b43d +size 485937899 diff --git a/weights/OO/OO_e200.pth b/weights/OO/OO_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..b6389c09a89992a9f1ab77fe1e5f73c9b14f4d2e --- /dev/null +++ b/weights/OO/OO_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d4b4c3dff5713c86283278635d9ce38b836feae45486c4328229ad48d257236f +size 55234359 diff --git a/weights/P/P.index b/weights/P/P.index new file mode 100644 index 0000000000000000000000000000000000000000..59baea3a4ab80dd5b712b755b48e4b81a1c0ae60 --- /dev/null +++ b/weights/P/P.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dad820a04a06e1de36e229e8ed23687879703243d21e7622b4c9fb414493d32e +size 179339299 diff --git a/weights/P/P.pth b/weights/P/P.pth new file mode 100644 index 0000000000000000000000000000000000000000..aa245b18faabb197f21b41760e04a5c4c93ad38d --- /dev/null +++ b/weights/P/P.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d7a45ae6af7ac077eeee338feda035da0c1c94b04a9bf1f1b55d73cb3490a9a +size 55233900 diff --git a/weights/PP/PP.index b/weights/PP/PP.index new file mode 100644 index 0000000000000000000000000000000000000000..385cfa122974247a940206cb339ec05d91d92af8 --- /dev/null +++ b/weights/PP/PP.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eb49ec15ffc1821d3d6e34a1431cd61914c9c0cf4ca75a1f553c932a937f8f51 +size 531678979 diff --git a/weights/PP/PP_e300.pth b/weights/PP/PP_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..e2934b7699b92abc58d393f3ae564531a0a8cd1c --- /dev/null +++ b/weights/PP/PP_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f05b988249b6188d2a93932ce2e2869f245b34881f919450f0539875c100ae89 +size 55232523 diff --git a/weights/Q/Q.index b/weights/Q/Q.index new file mode 100644 index 0000000000000000000000000000000000000000..e1c4952e40326e83b17c627f15cae05826aa222b --- /dev/null +++ b/weights/Q/Q.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4d9b26b701778c40f222256e59882de998ab259102f1ad471ad768bb27e72837 +size 493517779 diff --git a/weights/Q/Q.pth b/weights/Q/Q.pth new file mode 100644 index 0000000000000000000000000000000000000000..fdfc594f3865c5fd1a17f0d8aad6a67866186739 --- /dev/null +++ b/weights/Q/Q.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f6f5c8ad7f7b5467abce441e75a8d38b77ac7e5f4b01ad99bc00a4f91abe6cb7 +size 55232064 diff --git a/weights/QQ/QQ.index b/weights/QQ/QQ.index new file mode 100644 index 0000000000000000000000000000000000000000..0d7dea00ac654cd50259e37082997d4833f083c1 --- /dev/null +++ b/weights/QQ/QQ.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cb160a26fdeb1dbac2c4b674be4ff724e47ddfd4f9c219a6b02859cc2bd2ac75 +size 567835099 diff --git a/weights/QQ/QQ_e250.pth b/weights/QQ/QQ_e250.pth new file mode 100644 index 0000000000000000000000000000000000000000..f397400f0df566db8cc08e1680d059110322d6a7 --- /dev/null +++ b/weights/QQ/QQ_e250.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39a601f439fa76ddd3a23d582f86352d9f00f3ac67edbcafbec2770db01fed1d +size 55232523 diff --git a/weights/R/R.index b/weights/R/R.index new file mode 100644 index 0000000000000000000000000000000000000000..c4fab135be3b83df7073d675ee1b679688a1af4f --- /dev/null +++ b/weights/R/R.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:84e088766b89b2c4223c9256f660ce86a6a4c32b9cc45baad658b11d77b13658 +size 286803579 diff --git a/weights/R/R.pth b/weights/R/R.pth new file mode 100644 index 0000000000000000000000000000000000000000..66e224077d9a2b55708093a9bede9e29f6e39b5d --- /dev/null +++ b/weights/R/R.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c8ff679753fd9030c1d051312617d7298a76568e5ac5f3a972b3e1d49ba869d +size 55234359 diff --git a/weights/RR/RR.index b/weights/RR/RR.index new file mode 100644 index 0000000000000000000000000000000000000000..7b22bc964d06a33178083e53340a090cdb9402b7 --- /dev/null +++ b/weights/RR/RR.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e4622e94ef8b588eda6a2240c0f5500a9a77f126c397c3cb1cddd66ef86e39e +size 463641779 diff --git a/weights/RR/RR_e200.pth b/weights/RR/RR_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..dc5bcc499c97dd86c9f7025d104cbc8a8fd89f68 --- /dev/null +++ b/weights/RR/RR_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8dae60dd3c791a6e1569645e2e792121b91e71aea34542af3b771e29fce0ee25 +size 55233900 diff --git a/weights/S/S.index b/weights/S/S.index new file mode 100644 index 0000000000000000000000000000000000000000..8f089bb56a69064cafdb8a0f721c541b6f4657d6 --- /dev/null +++ b/weights/S/S.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:240fb99c3a98c5c328c68783d85d89babb878fd2e9d5587eb76dcb249d63e15a +size 510035819 diff --git a/weights/S/S.pth b/weights/S/S.pth new file mode 100644 index 0000000000000000000000000000000000000000..8acd4df4881237f80372a1a4cce3d3fb85dbff78 --- /dev/null +++ b/weights/S/S.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a4913cdeae6b49e069bb5eba9fe0366bedcba434acbebdd5b745dd55e8ce7400 +size 55232523 diff --git a/weights/SS/SS.index b/weights/SS/SS.index new file mode 100644 index 0000000000000000000000000000000000000000..a2519b1e7eeda2ffe6dfd67b86e6b2a602019bda --- /dev/null +++ b/weights/SS/SS.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e226a13499c36180f760dc0ea35a7c4696a840b29f0c85b3576db8ba0952a2e5 +size 514612699 diff --git a/weights/SS/SS_e200.pth b/weights/SS/SS_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..3811d2bb5ff3271a831aae71b6b43ef2bc478345 --- /dev/null +++ b/weights/SS/SS_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:91df3da996090155c906459d3db032564833435e25d4f61ded3d566b1de78047 +size 55232982 diff --git a/weights/T/T.index b/weights/T/T.index new file mode 100644 index 0000000000000000000000000000000000000000..ad5465358840740b023db4a8fbf83a8dd2c44ba3 --- /dev/null +++ b/weights/T/T.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b0cc9669b4d399a321223ab9e876b541e6410bc3abab7e7aabd288102d33d366 +size 512253419 diff --git a/weights/T/T.pth b/weights/T/T.pth new file mode 100644 index 0000000000000000000000000000000000000000..8798bddc60739cd5c64a9e0ebda49463043a51ba --- /dev/null +++ b/weights/T/T.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b09b60ee2d2e1f6416eb12ea9dc562ded33a9f45b4f73d606a54f801ec4f1c7c +size 55233900 diff --git a/weights/TT/TT.index b/weights/TT/TT.index new file mode 100644 index 0000000000000000000000000000000000000000..8d9af80bb271a6f0305f9f4ccd960a7fabe262ad --- /dev/null +++ b/weights/TT/TT.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be5c36525efd9605bdbea05c2475c1c548646049b2854383620f89ab4f94655f +size 499197299 diff --git a/weights/TT/TT_e200.pth b/weights/TT/TT_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..0aa60ea9dfebfba4505eb732593e490c2ac93636 --- /dev/null +++ b/weights/TT/TT_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7bcaacbc179a9f515fd5fd4466511a1386e0040a3f1088f1efb210698ceb532d +size 55231605 diff --git a/weights/U/U.index b/weights/U/U.index new file mode 100644 index 0000000000000000000000000000000000000000..312b2a1b4d992f6b32defd7fb7100f306e19d7f3 --- /dev/null +++ b/weights/U/U.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc17b361fc3fcd0d20c6d294b9fc5d2c07e96d25d353d19b2c96f3f71671d900 +size 490647219 diff --git a/weights/U/U.pth b/weights/U/U.pth new file mode 100644 index 0000000000000000000000000000000000000000..cfdea3be28c2599631368b108ded1f01b12f32f3 --- /dev/null +++ b/weights/U/U.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1cf9b8a93e9fe34b29cc2b61f8677e4eb3e51cd71074533dcbf19571bfce09a8 +size 55231605 diff --git a/weights/UU/UU.index b/weights/UU/UU.index new file mode 100644 index 0000000000000000000000000000000000000000..44ba0529e37d4d66da96496eccae27616a72174e --- /dev/null +++ b/weights/UU/UU.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:936e21d8ec081010dd246fba46ece5edf1b816abd5badec9434570aaf1e06cca +size 489643139 diff --git a/weights/UU/UU_e190.pth b/weights/UU/UU_e190.pth new file mode 100644 index 0000000000000000000000000000000000000000..56d3faa20f9112b61c87ffa65ec067b2f9ec3aa7 --- /dev/null +++ b/weights/UU/UU_e190.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2bd00fe9214fe02fca8a6f47dbe27f36582772dc41e32bc6ed8e3914661dfdc8 +size 55232523 diff --git a/weights/V/V.index b/weights/V/V.index new file mode 100644 index 0000000000000000000000000000000000000000..8565225901c40bfe59f28494b30207d0fe39ef5b --- /dev/null +++ b/weights/V/V.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8006fed6f5315c26fa55c0cb983b38f79e02addb48d9314214aa5323fa5e15af +size 503453859 diff --git a/weights/V/V_e250.pth b/weights/V/V_e250.pth new file mode 100644 index 0000000000000000000000000000000000000000..5ad5641d12dfa85d34754158e5c25fd462a510c3 --- /dev/null +++ b/weights/V/V_e250.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:47e9e7a235c048e73d727485039a4bd78c82a2af2b7ba09a017beebe2be3127a +size 55231605 diff --git a/weights/VV/VV.index b/weights/VV/VV.index new file mode 100644 index 0000000000000000000000000000000000000000..6e766a12f5dde3252e89300a00837937c9e1195a --- /dev/null +++ b/weights/VV/VV.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:609d61d887b81d37da58034ac985c8475f9aa30cabc973addf9e4517238ad6fc +size 552355019 diff --git a/weights/VV/VV_e170.pth b/weights/VV/VV_e170.pth new file mode 100644 index 0000000000000000000000000000000000000000..0fe09ddadcde6035c10da8de8e6cdf9104ea3753 --- /dev/null +++ b/weights/VV/VV_e170.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6f0740e45129f69d064f1b2f0da97c1676f67bb62c725c86ebbdc7bfb9f9f4a3 +size 55232982 diff --git a/weights/W/W.index b/weights/W/W.index new file mode 100644 index 0000000000000000000000000000000000000000..d27909c77bd99c22009af07a27f0f8852d3a5d9a --- /dev/null +++ b/weights/W/W.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:36f7791a06efb592ab14ab0a9f6087ea729585774b74a6c9ea575168d8907062 +size 550796539 diff --git a/weights/W/W.pth b/weights/W/W.pth new file mode 100644 index 0000000000000000000000000000000000000000..85d4c4e9e37d1d98b42cc94b78ee9993f60ff984 --- /dev/null +++ b/weights/W/W.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6cbc5c3440205e3195ef74bde1210c8e3b2df58ab5287409b0ec4c4d4404d7b +size 55231146 diff --git a/weights/WW/WW.index b/weights/WW/WW.index new file mode 100644 index 0000000000000000000000000000000000000000..9239c3f299978ca274d50ffa847aa38f876aa63d --- /dev/null +++ b/weights/WW/WW.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b391b4d40b0907637dedb781297718e607f151205148effd85926a9eed9d2d1c +size 543459979 diff --git a/weights/WW/WW_e300.pth b/weights/WW/WW_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..716111b91e69562d3895ab2687374f45bab1ab45 --- /dev/null +++ b/weights/WW/WW_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f771a92e817a24be7b46b14e1a8ae5dc84f722c34dbac6f9904d2f805f6c89d4 +size 55231605 diff --git a/weights/X/X.index b/weights/X/X.index new file mode 100644 index 0000000000000000000000000000000000000000..506d2bd23e70d78e3a8c075e02eb8cb919dd034e --- /dev/null +++ b/weights/X/X.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c762bc5259a75782e0df96aaf2c8df671f907db5eceeb3de365701bd33c82745 +size 566501459 diff --git a/weights/X/X_e300.pth b/weights/X/X_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..0f7fb541e1080f89aea045de8f7e5d6cc663437f --- /dev/null +++ b/weights/X/X_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1178230586d36c86a7540a636c22e59605f6c5d9b0a8f975aaf06d7ff048a94d +size 55233900 diff --git a/weights/XX/XX.index b/weights/XX/XX.index new file mode 100644 index 0000000000000000000000000000000000000000..25d81fb6501f6619a356f5ce3849022d06248d46 --- /dev/null +++ b/weights/XX/XX.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0ac8d1b49c0228bbd9b5f761db2e9835d891e0a8f7f9821cbe7ce3ecdda055bc +size 515170179 diff --git a/weights/XX/XX_e200.pth b/weights/XX/XX_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..3be33528ac1428b0d7a0dd3c358639c29f5b4dd0 --- /dev/null +++ b/weights/XX/XX_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63ce5d5fb301cc4c5e0f4d40f64bf6b17337e6665a4664780392fd31a76cfb7d +size 55230687 diff --git a/weights/Y/Y.index b/weights/Y/Y.index new file mode 100644 index 0000000000000000000000000000000000000000..86e2a2643f8904a7b9312ebdd8dae769429f198f --- /dev/null +++ b/weights/Y/Y.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:94fac1dbb348a9210d37a0061d4045d4385f013cf64f9033ca9283bafc68bd8f +size 533024939 diff --git a/weights/Y/Y_e250.pth b/weights/Y/Y_e250.pth new file mode 100644 index 0000000000000000000000000000000000000000..7670a4745bb5fc21ba721f0b3ae1f0fc00470089 --- /dev/null +++ b/weights/Y/Y_e250.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bb6042951cae5e9d129e8cd0cb1d6f0a7703d0e1dcb34eedc8c5e8da7825cfc2 +size 55232064 diff --git a/weights/YY/YY.index b/weights/YY/YY.index new file mode 100644 index 0000000000000000000000000000000000000000..81da2cadc52043a29d09035774da9fa2fc9f0633 --- /dev/null +++ b/weights/YY/YY.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:27bc4ea221ef58b56d00206006ef812de0687639df87df0fe0a7aeaed72bde71 +size 557794299 diff --git a/weights/YY/YY_e300.pth b/weights/YY/YY_e300.pth new file mode 100644 index 0000000000000000000000000000000000000000..6f8a2192ca352d0251ac5ff82b260ba0d7fdce03 --- /dev/null +++ b/weights/YY/YY_e300.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:372f440fdcd53252edc0fd3922cfcb180e0c77fe21ae06d67497d99813f848e8 +size 55231146 diff --git a/weights/Z/Z.index b/weights/Z/Z.index new file mode 100644 index 0000000000000000000000000000000000000000..192f07e51d04da76ef3219de1a0ff9f29787c704 --- /dev/null +++ b/weights/Z/Z.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:649011b6302c2cb3fd2bae23dc5f4a2af0075b5425c67e11adde30f43b58957f +size 483230579 diff --git a/weights/Z/Z_e200.pth b/weights/Z/Z_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..af6c3815380e0a673e062c5c2936ab36f857addf --- /dev/null +++ b/weights/Z/Z_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6468f3c964bd6b886174a0c578aa337c6a39527efd4742842ef6fe96f89a5c20 +size 55233441 diff --git a/weights/man-A/man-A.index b/weights/man-A/man-A.index new file mode 100644 index 0000000000000000000000000000000000000000..5618efc4f3ac50a359bdce457f161794c3dcb761 --- /dev/null +++ b/weights/man-A/man-A.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6d2e5e7431ddad9f5883ef5d4e4836e96cdfd83011a91f25706051d1f6cf3a80 +size 526692459 diff --git a/weights/man-A/man-A.pth b/weights/man-A/man-A.pth new file mode 100644 index 0000000000000000000000000000000000000000..130ec9c62ebf9c4cba6da1b4144ad718e8dde19a --- /dev/null +++ b/weights/man-A/man-A.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1f59b2e58a0c7d3ac25a18f726329c5fbcb5ca257ef951900cd87a87ace1096b +size 55232523 diff --git a/weights/man-B/man-B.index b/weights/man-B/man-B.index new file mode 100644 index 0000000000000000000000000000000000000000..6bb6a689664feb205d465198d5d6465829100405 --- /dev/null +++ b/weights/man-B/man-B.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d1afb1d36953f82dc3b1ad701e5e00841aa2ba541631d1ca78862e1715bd2ba0 +size 486523099 diff --git a/weights/man-B/man-B.pth b/weights/man-B/man-B.pth new file mode 100644 index 0000000000000000000000000000000000000000..1d79956244bbe21c0cd407f04a6672dc7c407175 --- /dev/null +++ b/weights/man-B/man-B.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f00bf3e8ddd9132cb1bff543889b0cc2ae9622f0b36076a1aeea27a785371b98 +size 55232523 diff --git a/weights/man-C/man-C.index b/weights/man-C/man-C.index new file mode 100644 index 0000000000000000000000000000000000000000..9d22208fe7afd6a4717278be19c0ef628cda5710 --- /dev/null +++ b/weights/man-C/man-C.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ad0fb3c95ed74bf74a36f7c3a50b9da045f742c935f8786a184d99cc011bba9a +size 369119659 diff --git a/weights/man-C/man-C.pth b/weights/man-C/man-C.pth new file mode 100644 index 0000000000000000000000000000000000000000..5c9a34b27dfc825b051125c34cba7d8b7bfcf29a --- /dev/null +++ b/weights/man-C/man-C.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:09c12ce79ed73d699e178019de2f416287c912a52403557565f5c2f851a2d92e +size 55226951 diff --git a/weights/man-D/man-D.index b/weights/man-D/man-D.index new file mode 100644 index 0000000000000000000000000000000000000000..9f4730f5e8fbcc424173725e5dd720ce23877b44 --- /dev/null +++ b/weights/man-D/man-D.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:821415c884a369d2d1b702566685d6498c0d8b91eb1644ef4f54de70d41a1a5b +size 180106219 diff --git a/weights/man-D/man-D.pth b/weights/man-D/man-D.pth new file mode 100644 index 0000000000000000000000000000000000000000..78c452b5ca628d3caf186c68421bcb142a21f0d8 --- /dev/null +++ b/weights/man-D/man-D.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c13c2376658b9de6f8808e1f6bc44b29ec26bb55c7397a5d0f1dad5b53176443 +size 55232064 diff --git a/weights/man-E/man-E.index b/weights/man-E/man-E.index new file mode 100644 index 0000000000000000000000000000000000000000..e6bd8b308127c77415b7909771d396958e38f394 --- /dev/null +++ b/weights/man-E/man-E.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9bf5c8d76b4b8e7f6db20f6444e09645a42917a2821513c06c928579e62e21db +size 440147539 diff --git a/weights/man-E/man-E.pth b/weights/man-E/man-E.pth new file mode 100644 index 0000000000000000000000000000000000000000..b5292ae62ba3d0c5487adf94cd69c0176c453556 --- /dev/null +++ b/weights/man-E/man-E.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cf201ba52d81ff9192cc082848d5bff2dedce9bd71823a452f7956eb9b0b04c5 +size 55232064 diff --git a/weights/man-F/man-F.index b/weights/man-F/man-F.index new file mode 100644 index 0000000000000000000000000000000000000000..b808c6beb33a9d45adb519e9ec66fdf604fc34ee --- /dev/null +++ b/weights/man-F/man-F.index @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d58654ce8f946ea5b5b3f94530cfb0034a8011795b19e90da78bfca0bd7fc626 +size 344143939 diff --git a/weights/man-F/man-F_e200.pth b/weights/man-F/man-F_e200.pth new file mode 100644 index 0000000000000000000000000000000000000000..8ea758cabccdc75cecfe22425dc06e6440976899 --- /dev/null +++ b/weights/man-F/man-F_e200.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1ea757938f7a754abca1a5d88ff5e46ee0fe64dd0a2e56de8e5f52c077a9cb83 +size 55232982