import gradio as gr import groq import io import numpy as np import soundfile as sf def transcribe_audio(audio, api_key): if audio is None: return "" client = groq.Client(api_key=api_key) # Convert audio to the format expected by the model # The model supports mp3, mp4, mpeg, mpga, m4a, wav, and webm file types audio_data = audio[1] # Get the numpy array from the tuple buffer = io.BytesIO() sf.write(buffer, audio_data, audio[0], format='wav') buffer.seek(0) bytes_audio = io.BytesIO() np.save(bytes_audio, audio_data) bytes_audio.seek(0) try: # Use Distil-Whisper English powered by Groq for transcription completion = client.audio.transcriptions.create( model="distil-whisper-large-v3-en", file=("audio.wav", buffer), response_format="text" ) return completion except Exception as e: return f"Error in transcription: {str(e)}" def generate_response(transcription, api_key): if not transcription: return "No transcription available. Please try speaking again." client = groq.Client(api_key=api_key) try: # Use Llama 3.1 70B powered by Groq for text generation completion = client.chat.completions.create( model="llama-3.1-70b-versatile", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": transcription} ], ) return completion.choices[0].message.content except Exception as e: return f"Error in response generation: {str(e)}" def process_audio(audio, api_key): if not api_key: return "Please enter your Groq API key.", "API key is required." transcription = transcribe_audio(audio, api_key) response = generate_response(transcription, api_key) return transcription, response # Custom CSS for the Groq badge and color scheme (feel free to edit however you wish) custom_css = """ .gradio-container { background-color: #f5f5f5; } .gr-button-primary { background-color: #f55036 !important; border-color: #f55036 !important; } .gr-button-secondary { color: #f55036 !important; border-color: #f55036 !important; } #groq-badge { position: fixed; bottom: 20px; right: 20px; z-index: 1000; } """ with gr.Blocks(theme=gr.themes.Default()) as demo: gr.Markdown("# 🎙️ Groq x Gradio Voice-Powered AI Assistant") api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key") with gr.Row(): audio_input = gr.Audio(label="Speak!", type="numpy") with gr.Row(): transcription_output = gr.Textbox(label="Transcription") response_output = gr.Textbox(label="AI Assistant Response") submit_button = gr.Button("Process", variant="primary") # Add the Groq badge gr.HTML("""
POWERED BY GROQ
""") submit_button.click( process_audio, inputs=[audio_input, api_key_input], outputs=[transcription_output, response_output] ) gr.Markdown(""" ## How to use this app: 1. Enter your Groq API Key in the provided field. 2. Click on the microphone icon and speak your message (or forever hold your peace)! You can also provide a supported audio file. Supported audio files include mp3, mp4, mpeg, mpga, m4a, wav, and webm file types. 3. Click the "Process" button to transcribe your speech and generate a response from our AI assistant. 4. The transcription and AI assistant response will appear in the respective text boxes. """) demo.launch()