File size: 11,410 Bytes
21bee4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Import necessary libraries
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.manifold import TSNE
from datasets import load_dataset, Dataset
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import time
import logging


# Additional libraries for querying
from FlagEmbedding import FlagModel

# Global variables and dataset loading
global dataset_name
dataset_name = 'somewheresystems/dataclysm-arxiv'
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
total_samples = len(st.session_state.dataclysm_arxiv)

logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO)
# Load the dataset once at the start
# Initialize the model for querying
model = FlagModel('BAAI/bge-small-en-v1.5', query_instruction_for_retrieval="Represent this sentence for searching relevant passages:", use_fp16=True)


def load_data(num_samples):
    start_time = time.time() 
    dataset_name = 'somewheresystems/dataclysm-arxiv'
    # Load the dataset
    logging.info(f'Loading dataset...')
    dataset = load_dataset(dataset_name)
    total_samples = len(dataset['train'])

    logging.info('Converting to pandas dataframe...')
    # Convert the dataset to a pandas DataFrame
    df = dataset['train'].to_pandas()

    # Adjust num_samples if it's more than the total number of samples
    num_samples = min(num_samples, total_samples)
    st.sidebar.text(f'Number of samples: {num_samples} ({num_samples / total_samples:.2%} of total)')

    # Randomly sample the dataframe
    df = df.sample(n=num_samples)

    # Assuming 'embeddings' column contains the embeddings
    embeddings = df['title_embedding'].tolist()
    print("embeddings length: " + str(len(embeddings)))

    # Convert list of lists to numpy array
    embeddings = np.array(embeddings, dtype=object)
    end_time = time.time()  # End timing
    st.sidebar.text(f'Data loading completed in {end_time - start_time:.3f} seconds')
    return df, embeddings

def perform_tsne(embeddings):
    start_time = time.time() 
    logging.info('Performing t-SNE...')

    n_samples = len(embeddings)
    perplexity = min(30, n_samples - 1) if n_samples > 1 else 1

    # Check if all embeddings have the same length
    if len(set([len(embed) for embed in embeddings])) > 1:
        raise ValueError("All embeddings should have the same length")

    # Dimensionality Reduction with t-SNE
    tsne = TSNE(n_components=3, perplexity=perplexity, n_iter=300)

    # Create a placeholder for progress bar
    progress_text = st.empty()
    progress_text.text("t-SNE in progress...")

    tsne_results = tsne.fit_transform(np.vstack(embeddings.tolist()))

    # Update progress bar to indicate completion
    progress_text.text(f"t-SNE completed. Processed {n_samples} samples with perplexity {perplexity}.")
    end_time = time.time()  # End timing
    st.sidebar.text(f't-SNE completed in {end_time - start_time:.3f} seconds')
    return tsne_results


def perform_clustering(df, tsne_results):
    start_time = time.time() 
    # Perform KMeans clustering
    logging.info('Performing k-means clustering...')
    # Step 3: Visualization with Plotly
    df['tsne-3d-one'] = tsne_results[:,0]
    df['tsne-3d-two'] = tsne_results[:,1]
    df['tsne-3d-three'] = tsne_results[:,2]

    # Perform KMeans clustering
    kmeans = KMeans(n_clusters=16)  # Change the number of clusters as needed
    df['cluster'] = kmeans.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
    end_time = time.time()  # End timing
    st.sidebar.text(f'k-means clustering completed in {end_time - start_time:.3f} seconds')
    return df

def main():
    # Custom CSS
    custom_css = """
    <style>
        /* Define the font */
        @font-face {
            font-family: 'F';
            src: url('https://fonts.googleapis.com/css2?family=Martian+Mono&display=swap') format('truetype');
        }
        /* Apply the font to all elements */
        * {
            font-family: 'F', sans-serif !important;
            color: #F8F8F8; /* Set the font color to F8F8F8 */
        }
        /* Add your CSS styles here */
        h1 {
            text-align: center;
        }
        h2,h3,h4 {
            text-align: justify;
            font-size: 8px
        }
        body {
            text-align: justify;
        }
        .stSlider .css-1cpxqw2 {
            background: #202020;
        }
        .stButton > button {
            background-color: #202020;
            width: 100%;
            border: none;
            padding: 10px 24px;
            border-radius: 5px;
            font-size: 16px;
            font-weight: bold;
        }
        .reportview-container .main .block-container {
            padding: 2rem;
            background-color: #202020;
        }
    </style>
    """

    # Inject custom CSS with markdown
    st.markdown(custom_css, unsafe_allow_html=True)
    st.sidebar.markdown(
        f'<img src="https://www.somewhere.systems/S2-white-logo.png" style="float: bottom-left; width: 32px; height: 32px; opacity: 1.0; animation: fadein 2s;">', 
        unsafe_allow_html=True
    )
    st.sidebar.title('Spatial Search Engine')

    # Check if data needs to be loaded
    if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
        # User input for number of samples
        num_samples = st.sidebar.slider('Select number of samples', 1000, total_samples, 1000)

        if st.sidebar.button('Initialize'):
            st.sidebar.text('Initializing data pipeline...')

            # Define a function to reshape the embeddings and add FAISS index if it doesn't exist
            def reshape_and_add_faiss_index(dataset, column_name):
                
                # Ensure the shape of the embedding is (1000, 384) and not (1000, 1, 384)
                # As each row in title_embedding is shaped like this: [[-0.08477783203125, -0.009719848632812, ...]]
                # We need to flatten it to [-0.08477783203125, -0.009719848632812, ...]
                print(f"Flattening {column_name} and adding FAISS index...")
                # Flatten the embeddings
                dataset[column_name] = dataset[column_name].apply(lambda x: np.array(x).flatten())
                # Add the FAISS index
                dataset = Dataset.from_pandas(dataset).add_faiss_index(column=column_name)
                print(f"FAISS index for {column_name} added.")
                
                return dataset
                

            
            # Load data and perform t-SNE and clustering
            df, embeddings = load_data(num_samples)

            # Combine embeddings and df back into one df
            # Convert embeddings to list of lists before assigning to df
            embeddings_list = [embedding.flatten().tolist() for embedding in embeddings]
            df['title_embedding'] = embeddings_list
            # Print the first few rows of the dataframe to check
            print(df.head())
            # Add FAISS indices for 'title_embedding' 
            st.session_state.dataclysm_title_indexed = reshape_and_add_faiss_index(df, 'title_embedding')
            tsne_results = perform_tsne(embeddings)
            df = perform_clustering(df, tsne_results)
            # Store results in session state
            st.session_state.df = df
            st.session_state.tsne_results = tsne_results
            st.session_state.data_loaded = True
        
            # Create custom hover text
            df['hovertext'] = df.apply(
                lambda row: f"<b>Title:</b> {row['title']}<br><b>arXiv ID:</b> {row['id']}<br><b>Key:</b> {row.name}", axis=1
            )
            st.sidebar.text("Datasets loaded, titles indexed.")

            # Create the plot
            fig = go.Figure(data=[go.Scatter3d(
                x=df['tsne-3d-one'],
                y=df['tsne-3d-two'],
                z=df['tsne-3d-three'],
                mode='markers',
                hovertext=df['hovertext'],
                hoverinfo='text',
                marker=dict(
                    size=1,
                    color=df['cluster'],
                    colorscale='Viridis',
                    opacity=0.8
                )
            )])

            fig.update_layout(
                plot_bgcolor='#202020',
                height=800,
                margin=dict(l=0, r=0, b=0, t=0),
                scene=dict(
                    xaxis=dict(showbackground=True, backgroundcolor="#000000"),
                    yaxis=dict(showbackground=True, backgroundcolor="#000000"),
                    zaxis=dict(showbackground=True, backgroundcolor="#000000"),
                ),
                scene_camera=dict(eye=dict(x=0.001, y=0.001, z=0.001))
            )
            st.session_state.fig = fig

    # Display the plot if data is loaded
    if 'data_loaded' in st.session_state and st.session_state.data_loaded:
        st.plotly_chart(st.session_state.fig, use_container_width=True)


    # Sidebar for detailed view
    if 'df' in st.session_state:
        # Sidebar for querying
        with st.sidebar:
            st.sidebar.markdown("### Query Embeddings")
            query = st.text_input("Enter your query:")
            if st.button("Search"):
                # Define the model
                print("Initializing model...")
                model = FlagModel('BAAI/bge-small-en-v1.5', 
                                query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
                                use_fp16=True)
                print("Model initialized.")
                
                query_embedding = model.encode([query])
                # Retrieve examples by title similarity (or abstract, depending on your preference)
                scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=10)
                df_query = pd.DataFrame(retrieved_examples_title)
                df_query['proximity'] = scores_title
                df_query = df_query.sort_values(by='proximity', ascending=True)
                # Limit similarity score to 3 decimal points
                df_query['proximity'] = df_query['proximity'].round(3)
                # Fix the <a href link> to display properly
                df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
                st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
            st.sidebar.markdown("# Detailed View")
            selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)

            # Display metadata for the selected article
            selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
            st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
            st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
            st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
            st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
            
        

if __name__ == "__main__":
    main()