Spaces:
Runtime error
Runtime error
File size: 7,019 Bytes
1022069 46f04af 1022069 65226ab 1022069 4eacea4 1022069 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# -*- coding: utf-8 -*-
"""ABSTRACTGEN_ES FINAL.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1XdfeMcdDbRuRmOGGiOmkiCP9Yih5JXyF
# installs
"""
import os
os.system('pip install gpt_2_simple')
os.system('pip install os.system')
os.system('pip install gradio')
os.system('pip install huggingface_hub')
os.system('pip install easynmt')
os.system('pip install sentence-transformers')
os.system('curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash')
os.system('apt-get install git-lfs')
os.system('git lfs install')
os.system('git clone https://huggingface.co/franz96521/AbstractGeneratorES ')
#os.system('cd AbstractGeneratorES')
print(os.getcwd())
print(os.listdir())
# Commented out IPython magic to ensure Python compatibility.
# %cd '/content/AbstractGeneratorES'
"""# Init"""
import gpt_2_simple as gpt2
import os
import tensorflow as tf
import pandas as pd
import re
model_name = "124M"
if not os.path.isdir(os.path.join("models", model_name)):
print(f"Downloading {model_name} model...")
gpt2.download_gpt2(model_name=model_name)
path = os.getcwd()+'/AbstractGeneratorES/AbstractGenerator/'
checkpoint_dir =path+'weights/'
data_path = path+'TrainigData/'
file_name_en = 'en'
file_path_en = data_path+file_name_en
file_name_es = 'es'
file_path_es = data_path+file_name_es
prefix= '<|startoftext|>'
sufix ='<|endoftext|>'
import gradio as gr
import random
from easynmt import EasyNMT
from sentence_transformers import SentenceTransformer, util
def generateAbstract(text):
tf.compat.v1.reset_default_graph()
sess = gpt2.start_tf_sess()
gpt2.load_gpt2(sess,checkpoint_dir=checkpoint_dir,run_name='run1')
txt = gpt2.generate(sess,prefix=str(text)+"\nABSTRACT", return_as_list=True,truncate=sufix,checkpoint_dir=checkpoint_dir,nsamples=1)[0]
return txt
def removeAbstract(text):
p = text.find("Introducción")
p2 = text.find("INTRODUCCIÓN")
print(p,p2)
if(p != -1):
return (text[:p] , text[p:] )
if(p2 != -1):
return (text[:p2] , text[p2:] )
def generated_similarity(type_of_input, cn_text):
if(type_of_input == "English"):
tf.compat.v1.reset_default_graph()
model2 = EasyNMT('opus-mt')
cn_text = model2.translate(cn_text, target_lang='es')
print(cn_text)
abstract_original , body = removeAbstract(cn_text)
tf.compat.v1.reset_default_graph()
generated_Abstract = generateAbstract(body)
sentences = [abstract_original, generated_Abstract]
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
#Compute embedding for both lists
embedding_1= model.encode(sentences[0], convert_to_tensor=True)
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)
generated_similarity = util.pytorch_cos_sim(embedding_1, embedding_2)
## tensor([[0.6003]])
return f'''TEXTO SIN ABSTRACT\n
{body}\n
ABSTRACT ORIGINAL\n
{abstract_original}\n
ABSTRACT GENERADO\n
{generated_Abstract}\n
SIMILARIDAD DE ABSTRACT: {float(round(generated_similarity.item()*100, 3))}%
'''
elif type_of_input == "Spanish":
abstract_original , body = removeAbstract(cn_text)
tf.compat.v1.reset_default_graph()
generated_Abstract = generateAbstract(body)
sentences = [abstract_original, generated_Abstract]
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
#Compute embedding for both lists
embedding_1= model.encode(sentences[0], convert_to_tensor=True)
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)
generated_similarity = util.pytorch_cos_sim(embedding_1, embedding_2)
return f'''TEXTO SIN ABSTRACT\n
{body}\n
ABSTRACT ORIGINAL\n
{abstract_original}\n
ABSTRACT GENERADO\n
{generated_Abstract}\n
SIMILARIDAD DE ABSTRACT: {float(round(generated_similarity.item()*100, 3))}%
'''
def generated_abstract(type_of_input, cn_text):
if type_of_input == "English":
tf.compat.v1.reset_default_graph()
model2 = EasyNMT('opus-mt')
cn_text = model2.translate(cn_text, target_lang='es')
generated_Abstract = generateAbstract(cn_text)
return f'''TEXTO SIN ABSTRACT\n
{cn_text}\n
ABSTRACT GENERADO\n
{generated_Abstract}\n
'''
elif type_of_input == "Spanish":
tf.compat.v1.reset_default_graph()
generated_Abstract = generateAbstract(cn_text)
return f'''TEXTO SIN ABSTRACT\n
{cn_text}\n
ABSTRACT GENERADO\n
{generated_Abstract}\n
'''
block = gr.Blocks()
with block:
gr.Markdown('''ABSTRACTGEN_ES''')
gr.Markdown('''An app that can generate abstracts in Spanish based on the text that you input via document text and if you already have an abstract and need a different idea, check how similar the new abstract is to the original one.
''')
gr.Markdown('''FUNCTIONING:
- Upload your paper with abstract (text without abstract + original abstract by itself): our app will generate an abstract by its own, and then you can compare how similar it is in content itself with the original abstract that was contained in the file
- Upload your paper without abstract (text without abstract only): our app will generate an abstract that you can use for your paper and work in order for it to be used directly or to inspire you to write a good and well written abstract in Spanish''')
gr.Markdown(''' We used Blocks (beta), which allows you to build web-based demos in a flexible way using the gradio library. Blocks is a more low-level and flexible alternative to the core Interface class.
The main problem with this library right now is that
it doesn't support some functionality that Interface
class has''')
gr.Markdown('''To get more info about this project go to: https://sites.google.com/up.edu.mx/somos-pln-abstractgen-es/inicio''')
with gr.Tab("Full text and text similarity"):
gr.Markdown("Choose the language:")
type_of_input = gr.inputs.Radio(["English", "Spanish"], label="Input Language")
with gr.Row():
cn_text = gr.inputs.Textbox(placeholder="Full text", lines=7)
with gr.Row():
cn_results1 = gr.outputs.Textbox(label="Abstract generado")
cn_run = gr.Button("Run")
cn_run.click(generated_similarity, inputs=[type_of_input, cn_text], outputs=[cn_results1])
with gr.Tab("Only text with no abstract"):
gr.Markdown("Choose the language:")
type_of_input = gr.inputs.Radio(["English", "Spanish"], label="Input Language")
with gr.Row():
cn_text = gr.inputs.Textbox(placeholder="Text without abstract", lines=7)
with gr.Row():
cn_results1 = gr.outputs.Textbox(label="Abstract generado")
cn_run = gr.Button("Run")
cn_run.click(generated_abstract, inputs=[type_of_input, cn_text], outputs=cn_results1)
block.launch(debug = True)
|