|
import streamlit as st |
|
from sentence_transformers.util import cos_sim |
|
from sentence_transformers import SentenceTransformer |
|
|
|
@st.cache |
|
def load_model(): |
|
model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') |
|
model.eval() |
|
return model |
|
|
|
st.title("Sentence Embedding for Spanish with Bertin") |
|
st.write("Sentence embedding for spanish trained on NLI. Used for Sentence Textual Similarity. Based on the model hackathon-pln-es/bertin-roberta-base-finetuning-esnli.") |
|
|
|
sent1 = st.text_area('Enter sentence 1') |
|
sent2 = st.text_area('Enter sentence 2') |
|
|
|
if st.button('Compute similarity'): |
|
if sent1 and sent2: |
|
model = load_model() |
|
encodings = model.encode([sent1, sent2]) |
|
sim = cos_sim(encodings[0], encodings[1]).numpy().tolist()[0][0] |
|
st.text('Cosine Similarity: {0:.4f}'.format(sim)) |
|
else: |
|
st.write('Missing a sentences') |
|
else: |
|
pass |
|
|
|
|
|
|