import gradio as gr from datasets import load_dataset from transformers import pipeline from presentation import main_title, examples model_name= 'hackathon-pln-es/electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas' def clasificar_comentarios(comentario): cls= pipeline("text-classification", model=model_name) return cls(comentario)[0]['label'] if __name__ == "__main__": gr.Interface( fn=clasificar_comentarios, inputs=[ gr.inputs.Textbox( lines=10, label="Comentario a analizar:", placeholder="Ingrese el comentario por favor...", optional=False, ), ], outputs=[ gr.outputs.HTML( label="Resultado:" ) ], description=main_title, examples=examples, theme="seafoam", thumbnail="None", css="https://cdn.jsdelivr.net/npm/bootstrap@3.3.7/dist/css/bootstrap.min.css", ).launch()