Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -57,9 +57,7 @@ classificationResult = pipe("El objetivo de esta tesis es elaborar un estudio de
|
|
57 |
|
58 |
|
59 |
def thesis_prediction(input):
|
60 |
-
|
61 |
-
X_val_inputs, X_val_masks = preprocessingtext(_text,tokenizer)
|
62 |
-
t0 = time.time()
|
63 |
|
64 |
# Deserialization of the file
|
65 |
#file = open(path + os.path.sep + 'classIndexAssociation.pkl', 'rb')
|
@@ -68,66 +66,17 @@ def thesis_prediction(input):
|
|
68 |
#sizeOfClass = len(new_model)
|
69 |
|
70 |
model = AutoModelForSequenceClassification.from_pretrained(
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
outputs = model(**inputs, labels=labels)
|
79 |
-
|
80 |
-
loss, logits = outputs[:2]
|
81 |
-
|
82 |
-
#Transform in array
|
83 |
-
logits = logits.detach().cpu().numpy()
|
84 |
-
|
85 |
-
#Get max element and position
|
86 |
-
result = logits.argmax()
|
87 |
-
return result
|
88 |
-
|
89 |
-
#Example from
|
90 |
-
#
|
91 |
-
#
|
92 |
-
#
|
93 |
-
# pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
94 |
-
# # Put the model in evaluation mode
|
95 |
-
# classificationResult = pipe(_text)
|
96 |
-
# if classificationResult[0] != None and len (classificationResult[0]) > 0:
|
97 |
-
# #Order the result with more close to 1
|
98 |
-
# classificationResult[0].sort(reverse=True, key=lambda x:x['score'])
|
99 |
# # Return the text clasification
|
100 |
# keyClass = classificationResult[0][0]['label']
|
101 |
-
|
102 |
-
|
103 |
-
# return new_model[ int (keyClass)]
|
104 |
-
# else:
|
105 |
-
# raise Exception("Not exist class info")
|
106 |
-
# model.eval()
|
107 |
-
# outputs = model(X_val_inputs,
|
108 |
-
# token_type_ids=None,
|
109 |
-
# attention_mask=X_val_masks)
|
110 |
-
#
|
111 |
-
# # The "logits" are the output values
|
112 |
-
# # prior to applying an activation function
|
113 |
-
# logits = outputs[0]
|
114 |
-
#
|
115 |
-
# # Move logits and labels to CPU
|
116 |
-
# logits = logits.detach().cpu().numpy()
|
117 |
-
#
|
118 |
-
# sorted_tuples = sorted(logits.items(), key=lambda item: item[1])
|
119 |
-
# #Return the text clasification
|
120 |
-
# keyClass = sorted_tuples.keys()[0]
|
121 |
-
# return new_model[keyClass]
|
122 |
-
|
123 |
-
#else:
|
124 |
-
# raise Exception("Not exist model info")
|
125 |
-
#else:
|
126 |
-
# raise Exception("Not exist model info")
|
127 |
-
#return "Text"
|
128 |
-
|
129 |
-
#pass
|
130 |
-
|
131 |
|
132 |
examples = [["Introducci贸n al an谩lisis de riesgos competitivos bajo el enfoque de la funci贸n de incidencia acumulada (FIA) y su aplicaci贸n con R"], ["Los promedios de calificaciones y clasificar por grupo o asignatura se realizaron a trav茅s de tablas din谩micas en Excel"]]
|
133 |
|
|
|
57 |
|
58 |
|
59 |
def thesis_prediction(input):
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('"hiiamsid/BETO_es_binary_classification"', use_fast=False)
|
|
|
|
|
61 |
|
62 |
# Deserialization of the file
|
63 |
#file = open(path + os.path.sep + 'classIndexAssociation.pkl', 'rb')
|
|
|
66 |
#sizeOfClass = len(new_model)
|
67 |
|
68 |
model = AutoModelForSequenceClassification.from_pretrained(
|
69 |
+
'hackathon-pln-es/unam_tesis_BETO_finnetuning', num_labels=5, output_attentions=False,
|
70 |
+
output_hidden_states=False)
|
71 |
+
|
72 |
+
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
73 |
+
classificationResult = pipe(_text)
|
74 |
+
classificationResult[0].sort(reverse=True, key=lambda x:x['score'])
|
75 |
+
keyClass = classificationResult[0][0]['label']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# # Return the text clasification
|
77 |
# keyClass = classificationResult[0][0]['label']
|
78 |
+
return keyClass
|
79 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
examples = [["Introducci贸n al an谩lisis de riesgos competitivos bajo el enfoque de la funci贸n de incidencia acumulada (FIA) y su aplicaci贸n con R"], ["Los promedios de calificaciones y clasificar por grupo o asignatura se realizaron a trav茅s de tablas din谩micas en Excel"]]
|
82 |
|