File size: 11,672 Bytes
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba54e9
 
ed7a497
7ba54e9
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba54e9
 
 
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba54e9
ed7a497
 
 
 
 
 
 
 
 
 
 
 
7ba54e9
 
ed7a497
 
 
 
 
 
7ba54e9
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba54e9
ed7a497
 
 
 
 
 
 
7ba54e9
ed7a497
 
7ba54e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import sys
import os
import pandas as pd
import argparse


default_cuda_devices = "0"
if len(sys.argv) > 1:
    argument = sys.argv[1]
    if argument == '4':
        argument = default_cuda_devices
else:
    argument = default_cuda_devices
os.environ["CUDA_VISIBLE_DEVICES"] = argument
import numpy as np
import os
import torchaudio
import fire
import json
import torch
from tqdm import tqdm
import time
import torchvision
from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,
)
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, LlamaConfig

from utils.prompter import Prompter

device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser()
parser.add_argument('--input_csv', type=str, required=True, help='Path to the input file')
parser.add_argument('--output_csv', type=str, required=True, help='Path to the output file')
args = parser.parse_args()

def int16_to_float32_torch(x):
    return (x / 32767.0).type(torch.float32)

def float32_to_int16_torch(x):
    x = torch.clamp(x, min=-1., max=1.)
    return (x * 32767.).type(torch.int16)

def get_mel(audio_data):
        # mel shape: (n_mels, T)
    mel_tf = torchaudio.transforms.MelSpectrogram(
            sample_rate=48000,
            n_fft=1024,
            win_length=1024,
            hop_length=480,
            center=True,
            pad_mode="reflect",
            power=2.0,
            norm=None,
            onesided=True,
            n_mels=64,
            f_min=50,
            f_max=14000
    ).to(audio_data.device)
        
    mel = mel_tf(audio_data)

        # we use log mel spectrogram as input
    mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)

    return mel.T  # (T, n_mels)


def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, require_grad=False):
        grad_fn = suppress if require_grad else torch.no_grad
        with grad_fn():
            if len(audio_data) > max_len:
                if data_truncating == "rand_trunc":
                    longer = torch.tensor([True])
                elif data_truncating == "fusion":
                    # fusion
                    mel = get_mel(audio_data)
                    # split to three parts
                    chunk_frames = max_len // 480 + 1  # the +1 related to how the spectrogram is computed
                    total_frames = mel.shape[0]
                    if chunk_frames == total_frames:
                        # there is a corner case where the audio length is
                        # larger than max_len but smaller than max_len+hop_size.
                        # In this case, we just use the whole audio.
                        mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
                        sample["mel_fusion"] = mel_fusion
                        longer = torch.tensor([False])
                    else:
                        ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
                        # print('total_frames-chunk_frames:', total_frames-chunk_frames,
                        #       'len(audio_data):', len(audio_data),
                        #       'chunk_frames:', chunk_frames,
                        #       'total_frames:', total_frames)
                        if len(ranges[1]) == 0:
                            # if the audio is too short, we just use the first chunk
                            ranges[1] = [0]
                        if len(ranges[2]) == 0:
                            # if the audio is too short, we just use the first chunk
                            ranges[2] = [0]
                        # randomly choose index for each part
                        idx_front = np.random.choice(ranges[0])
                        idx_middle = np.random.choice(ranges[1])
                        idx_back = np.random.choice(ranges[2])
                        # select mel
                        mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :]
                        mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :]
                        mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :]

                        # shrink the mel
                        mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(mel[None])[0]
                        # logging.info(f"mel_shrink.shape: {mel_shrink.shape}")

                        # stack
                        mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0)
                        sample["mel_fusion"] = mel_fusion #.unsqueeze(0)
                        longer = torch.tensor([True])
                else:
                    raise NotImplementedError(
                        f"data_truncating {data_truncating} not implemented"
                    )
                # random crop to max_len (for compatibility)
                overflow = len(audio_data) - max_len
                idx = np.random.randint(0, overflow + 1)
                audio_data = audio_data[idx: idx + max_len]

            else:  # padding if too short
                if len(audio_data) < max_len:  # do nothing if equal
                    if data_filling == "repeatpad":
                        n_repeat = int(max_len / len(audio_data))
                        audio_data = audio_data.repeat(n_repeat)
                        # audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
                        # audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
                        audio_data = F.pad(
                            audio_data,
                            (0, max_len - len(audio_data)),
                            mode="constant",
                            value=0,
                        )
                    elif data_filling == "pad":
                        audio_data = F.pad(
                            audio_data,
                            (0, max_len - len(audio_data)),
                            mode="constant",
                            value=0,
                        )
                    elif data_filling == "repeat":
                        n_repeat = int(max_len / len(audio_data))
                        audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
                    else:
                        raise NotImplementedError(
                            f"data_filling {data_filling} not implemented"
                        )
                if data_truncating == 'fusion':
                    mel = get_mel(audio_data)
                    mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
                    sample["mel_fusion"] = mel_fusion
                longer = torch.tensor([False])

        sample["longer"] = longer
        sample["waveform"] = audio_data
        sample["mel_fusion"] = sample["mel_fusion"].unsqueeze(0)
        # print(sample["mel_fusion"].shape)
        # print("---------------------")
        return sample


    
def load_audio(filename):
    waveform, sr = torchaudio.load(filename)
    if sr != 16000:
        waveform = torchaudio.functional.resample(waveform=waveform, orig_freq=sr, new_freq=16000)
        sr = 16000
    waveform = waveform - waveform.mean()
    fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr,
                                              use_energy=False, window_type='hanning',
                                              num_mel_bins=128, dither=0.0, frame_shift=10)
    target_length = 1024
    n_frames = fbank.shape[0]
    p = target_length - n_frames
    if p > 0:
        m = torch.nn.ZeroPad2d((0, 0, 0, p))
        fbank = m(fbank)
    elif p < 0:
        fbank = fbank[0:target_length, :]
    # normalize the fbank
    fbank = (fbank + 5.081) / 4.4849
    return fbank


root_dir = '/fs/nexus-projects'
def main(
    base_model: str = "/fs/nexus-projects/brain_project/Llama-2-7b-chat-hf-qformer",
    prompt_template: str = "alpaca_short",  # The prompt template to use, will default to alpaca.
):
    base_model = base_model or os.environ.get("BASE_MODEL", "")
    assert (
        base_model
    ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"

    prompter = Prompter(prompt_template)
    tokenizer = LlamaTokenizer.from_pretrained(base_model)

    # model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto")
    model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto") #, torch_dtype=torch.bfloat16


    config = LoraConfig(
        r=8,
        lora_alpha=16,
        target_modules=["q_proj", "v_proj"],
        lora_dropout=0.0,
        bias="none",
        task_type="CAUSAL_LM",
    )

    model = get_peft_model(model, config)
    temp, top_p, top_k = 0.1, 0.95, 500
    # change it to your model path
    eval_root_path = ""

    eval_mdl_path = '/fs/gamma-projects/audio/gama/new_data_no_aggr/stage4_all_mix_new/checkpoint-46800//pytorch_model.bin'
    state_dict = torch.load(eval_mdl_path, map_location='cpu')
    msg = model.load_state_dict(state_dict, strict=False)

    model.is_parallelizable = True
    model.model_parallel = True

    # unwind broken decapoda-research config
    model.config.pad_token_id = tokenizer.pad_token_id = 0  # unk
    model.config.bos_token_id = 1
    model.config.eos_token_id = 2

    model.eval()
    file = pd.read_csv(args.input_csv) #pd.read_csv('/fs/nexus-projects/brain_project/aaai_2025/tut_urban_merged.csv')
    file = file.head()
    tmp_path = []
    tmp_caption = []
    tmp_dataset = []
    tmp_split_name = []
    for i in tqdm(range(len(file))):
        audio_path = file['path'][i]
        instruction = "Write a caption for the audio in AudioCaps style."
        prompt = prompter.generate_prompt(instruction, None)
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        if audio_path != 'empty':
            cur_audio_input = load_audio(audio_path).unsqueeze(0)
            if torch.cuda.is_available() == False:
                pass
            else:
                cur_audio_input = cur_audio_input.to(device)
        else:
            cur_audio_input = None

        generation_config = GenerationConfig(
            do_sample=True,
            temperature=temp,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=1.1,
            max_new_tokens=400,
            bos_token_id=model.config.bos_token_id,
            eos_token_id=model.config.eos_token_id,
            pad_token_id=model.config.pad_token_id,
            num_return_sequences=1
        )

        # Without streaming

        with torch.no_grad():
            generation_output = model.generate(
                input_ids=input_ids.to(device),
                audio_input=cur_audio_input,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=400,
            )
        s = generation_output.sequences[0]
        output = tokenizer.decode(s)[6:-4]
        output = output[len(prompt):]
        # print('----------------------')
        print(output)
        tmp_path.append(audio_path)
        tmp_caption.append(output)
        tmp_dataset.append(file['dataset'][i])
        tmp_split_name.append(file['split_name'][i])
    df = pd.DataFrame()
    df['path'] = tmp_path
    df['caption'] = tmp_caption
    df.to_csv(args.output_csv,index=False)

if __name__ == "__main__":
    fire.Fire(main(args))