File size: 7,249 Bytes
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that checks the list of models in the tips in the task-specific pages of the doc is up to date and potentially
fixes it.

Use from the root of the repo with:

```bash
python utils/check_task_guides.py
```

for a check that will error in case of inconsistencies (used by `make repo-consistency`).

To auto-fix issues run:

```bash
python utils/check_task_guides.py --fix_and_overwrite
```

which is used by `make fix-copies`.
"""
import argparse
import os

from transformers.utils import direct_transformers_import


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
TRANSFORMERS_PATH = "src/transformers"
PATH_TO_TASK_GUIDES = "docs/source/en/tasks"


def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str:
    """
    Find the text in filename between two prompts.

    Args:
        filename (`str`): The file to search into.
        start_prompt (`str`): A string to look for at the start of the content searched.
        end_prompt (`str`): A string that will mark the end of the content to look for.

    Returns:
        `str`: The content between the prompts.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    # Find the start prompt.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

    # Now go until the end prompt.
    end_index = start_index
    while not lines[end_index].startswith(end_prompt):
        end_index += 1
    end_index -= 1

    while len(lines[start_index]) <= 1:
        start_index += 1
    while len(lines[end_index]) <= 1:
        end_index -= 1
    end_index += 1
    return "".join(lines[start_index:end_index]), start_index, end_index, lines


# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)

# Map between a task guide and the corresponding auto class.
TASK_GUIDE_TO_MODELS = {
    "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
    "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}

# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
SPECIAL_TASK_GUIDE_TO_MODEL_TYPES = {
    "summarization.md": ("nllb",),
    "translation.md": ("nllb",),
}


def get_model_list_for_task(task_guide: str) -> str:
    """
    Return the list of models supporting a given task.

    Args:
        task_guide (`str`): The name of the task guide to check.

    Returns:
        `str`: The list of models supporting this task, as links to their respective doc pages separated by commas.
    """
    model_maping_names = TASK_GUIDE_TO_MODELS[task_guide]
    special_model_types = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(task_guide, set())
    model_names = {
        code: name
        for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
        if (code in model_maping_names or code in special_model_types)
    }
    return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()]) + "\n"


def check_model_list_for_task(task_guide: str, overwrite: bool = False):
    """
    For a given task guide, checks the model list in the generated tip for consistency with the state of the lib and
    updates it if needed.

    Args:
        task_guide (`str`):
            The name of the task guide to check.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the table when it's not up to date.
    """
    current_list, start_index, end_index, lines = _find_text_in_file(
        filename=os.path.join(PATH_TO_TASK_GUIDES, task_guide),
        start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->",
        end_prompt="<!--End of the generated tip-->",
    )

    new_list = get_model_list_for_task(task_guide)

    if current_list != new_list:
        if overwrite:
            with open(os.path.join(PATH_TO_TASK_GUIDES, task_guide), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [new_list] + lines[end_index:])
        else:
            raise ValueError(
                f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
                " to fix this."
            )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    for task_guide in TASK_GUIDE_TO_MODELS.keys():
        check_model_list_for_task(task_guide, args.fix_and_overwrite)