GAMA / peft-main /src /peft /mapping.py
Sonal Kumar
first commit
ed7a497
raw
history blame
4.33 kB
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .peft_model import (
PeftModel,
PeftModelForCausalLM,
PeftModelForSeq2SeqLM,
PeftModelForSequenceClassification,
PeftModelForTokenClassification,
)
from .tuners import AdaLoraConfig, LoraConfig, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig
from .utils import PromptLearningConfig
MODEL_TYPE_TO_PEFT_MODEL_MAPPING = {
"SEQ_CLS": PeftModelForSequenceClassification,
"SEQ_2_SEQ_LM": PeftModelForSeq2SeqLM,
"CAUSAL_LM": PeftModelForCausalLM,
"TOKEN_CLS": PeftModelForTokenClassification,
}
PEFT_TYPE_TO_CONFIG_MAPPING = {
"PROMPT_TUNING": PromptTuningConfig,
"PREFIX_TUNING": PrefixTuningConfig,
"P_TUNING": PromptEncoderConfig,
"LORA": LoraConfig,
"ADALORA": AdaLoraConfig,
}
def get_peft_config(config_dict):
"""
Returns a Peft config object from a dictionary.
Args:
config_dict (`Dict[str, Any]`): Dictionary containing the configuration parameters.
"""
return PEFT_TYPE_TO_CONFIG_MAPPING[config_dict["peft_type"]](**config_dict)
def _prepare_prompt_learning_config(peft_config, model_config):
if peft_config.num_layers is None:
if "num_hidden_layers" in model_config:
num_layers = model_config["num_hidden_layers"]
elif "num_layers" in model_config:
num_layers = model_config["num_layers"]
elif "n_layer" in model_config:
num_layers = model_config["n_layer"]
else:
raise ValueError("Please specify `num_layers` in `peft_config`")
peft_config.num_layers = num_layers
if peft_config.token_dim is None:
if "hidden_size" in model_config:
token_dim = model_config["hidden_size"]
elif "n_embd" in model_config:
token_dim = model_config["n_embd"]
elif "d_model" in model_config:
token_dim = model_config["d_model"]
else:
raise ValueError("Please specify `token_dim` in `peft_config`")
peft_config.token_dim = token_dim
if peft_config.num_attention_heads is None:
if "num_attention_heads" in model_config:
num_attention_heads = model_config["num_attention_heads"]
elif "n_head" in model_config:
num_attention_heads = model_config["n_head"]
elif "num_heads" in model_config:
num_attention_heads = model_config["num_heads"]
elif "encoder_attention_heads" in model_config:
num_attention_heads = model_config["encoder_attention_heads"]
else:
raise ValueError("Please specify `num_attention_heads` in `peft_config`")
peft_config.num_attention_heads = num_attention_heads
if getattr(peft_config, "encoder_hidden_size", None) is None:
setattr(peft_config, "encoder_hidden_size", token_dim)
return peft_config
def get_peft_model(model, peft_config):
"""
Returns a Peft model object from a model and a config.
Args:
model ([`transformers.PreTrainedModel`]): Model to be wrapped.
peft_config ([`PeftConfig`]): Configuration object containing the parameters of the Peft model.
"""
model_config = model.config.to_dict() if hasattr(model.config, "to_dict") else model.config
peft_config.base_model_name_or_path = model.__dict__.get("name_or_path", None)
if peft_config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys() and not isinstance(
peft_config, PromptLearningConfig
):
return PeftModel(model, peft_config)
if isinstance(peft_config, PromptLearningConfig):
peft_config = _prepare_prompt_learning_config(peft_config, model_config)
return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](model, peft_config)