|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import warnings |
|
from contextlib import contextmanager |
|
|
|
import torch |
|
from accelerate import dispatch_model, infer_auto_device_map |
|
from accelerate.hooks import AlignDevicesHook, add_hook_to_module, remove_hook_from_submodules |
|
from accelerate.utils import get_balanced_memory |
|
from huggingface_hub import hf_hub_download |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import SequenceClassifierOutput, TokenClassifierOutput |
|
from transformers.utils import PushToHubMixin |
|
|
|
from .tuners import AdaLoraModel, LoraModel, PrefixEncoder, PromptEmbedding, PromptEncoder |
|
from .utils import ( |
|
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, |
|
WEIGHTS_NAME, |
|
PeftConfig, |
|
PeftType, |
|
PromptLearningConfig, |
|
TaskType, |
|
_set_adapter, |
|
_set_trainable, |
|
get_peft_model_state_dict, |
|
set_peft_model_state_dict, |
|
shift_tokens_right, |
|
) |
|
|
|
|
|
PEFT_TYPE_TO_MODEL_MAPPING = { |
|
PeftType.LORA: LoraModel, |
|
PeftType.PROMPT_TUNING: PromptEmbedding, |
|
PeftType.P_TUNING: PromptEncoder, |
|
PeftType.PREFIX_TUNING: PrefixEncoder, |
|
PeftType.ADALORA: AdaLoraModel, |
|
} |
|
|
|
|
|
class PeftModel(PushToHubMixin, torch.nn.Module): |
|
""" |
|
Base model encompassing various Peft methods. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): The base transformer model used for Peft. |
|
peft_config ([`PeftConfig`]): The configuration of the Peft model. |
|
|
|
|
|
**Attributes**: |
|
- **base_model** ([`~transformers.PreTrainedModel`]) -- The base transformer model used for Peft. |
|
- **peft_config** ([`PeftConfig`]) -- The configuration of the Peft model. |
|
- **modules_to_save** (`list` of `str`) -- The list of sub-module names to save when |
|
saving the model. |
|
- **prompt_encoder** ([`PromptEncoder`]) -- The prompt encoder used for Peft if |
|
using [`PromptLearningConfig`]. |
|
- **prompt_tokens** (`torch.Tensor`) -- The virtual prompt tokens used for Peft if |
|
using [`PromptLearningConfig`]. |
|
- **transformer_backbone_name** (`str`) -- The name of the transformer |
|
backbone in the base model if using [`PromptLearningConfig`]. |
|
- **word_embeddings** (`torch.nn.Embedding`) -- The word embeddings of the transformer backbone |
|
in the base model if using [`PromptLearningConfig`]. |
|
""" |
|
|
|
def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): |
|
super().__init__() |
|
self.base_model = model |
|
self.config = self.base_model.config |
|
self.modules_to_save = None |
|
self.peft_config = {} |
|
self.active_adapter = adapter_name |
|
self.peft_type = peft_config.peft_type |
|
self.base_model_torch_dtype = getattr(model, "dtype", None) |
|
if not isinstance(peft_config, PromptLearningConfig): |
|
self.peft_config[adapter_name] = peft_config |
|
print(PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type]) |
|
self.base_model = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type]( |
|
self.base_model, self.peft_config, adapter_name |
|
) |
|
self.set_additional_trainable_modules(peft_config, adapter_name) |
|
else: |
|
self.add_adapter(adapter_name, peft_config) |
|
|
|
def save_pretrained(self, save_directory, **kwargs): |
|
r""" |
|
This function saves the adapter model and the adapter configuration files to a directory, so that it can be |
|
reloaded using the [`LoraModel.from_pretrained`] class method, and also used by the [`LoraModel.push_to_hub`] |
|
method. |
|
|
|
Args: |
|
save_directory (`str`): |
|
Directory where the adapter model and configuration files will be saved (will be created if it does not |
|
exist). |
|
kwargs (additional keyword arguments, *optional*): |
|
Additional keyword arguments passed along to the `push_to_hub` method. |
|
""" |
|
if os.path.isfile(save_directory): |
|
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
for adapter_name, peft_config in self.peft_config.items(): |
|
|
|
output_state_dict = get_peft_model_state_dict( |
|
self, state_dict=kwargs.get("state_dict", None), adapter_name=adapter_name |
|
) |
|
output_dir = os.path.join(save_directory, adapter_name) if adapter_name != "default" else save_directory |
|
os.makedirs(output_dir, exist_ok=True) |
|
torch.save(output_state_dict, os.path.join(output_dir, WEIGHTS_NAME)) |
|
|
|
|
|
if peft_config.base_model_name_or_path is None: |
|
peft_config.base_model_name_or_path = ( |
|
self.base_model.__dict__.get("name_or_path", None) |
|
if isinstance(peft_config, PromptLearningConfig) |
|
else self.base_model.model.__dict__.get("name_or_path", None) |
|
) |
|
inference_mode = peft_config.inference_mode |
|
peft_config.inference_mode = True |
|
peft_config.save_pretrained(output_dir) |
|
peft_config.inference_mode = inference_mode |
|
|
|
@classmethod |
|
def from_pretrained(cls, model, model_id, adapter_name="default", is_trainable=False, **kwargs): |
|
r""" |
|
Instantiate a [`LoraModel`] from a pretrained Lora configuration and weights. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): |
|
The model to be adapted. The model should be initialized with the |
|
[`~transformers.PreTrainedModel.from_pretrained`] method from the 🤗 Transformers library. |
|
model_id (`str` or `os.PathLike`): |
|
The name of the Lora configuration to use. Can be either: |
|
- A string, the `model id` of a Lora configuration hosted inside a model repo on the Hugging Face |
|
Hub. |
|
- A path to a directory containing a Lora configuration file saved using the `save_pretrained` |
|
method (`./my_lora_config_directory/`). |
|
""" |
|
from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING |
|
|
|
|
|
config = PEFT_TYPE_TO_CONFIG_MAPPING[ |
|
PeftConfig.from_pretrained(model_id, subfolder=kwargs.get("subfolder", None)).peft_type |
|
].from_pretrained(model_id, subfolder=kwargs.get("subfolder", None)) |
|
|
|
if (getattr(model, "hf_device_map", None) is not None) and len( |
|
set(model.hf_device_map.values()).intersection({"cpu", "disk"}) |
|
) > 0: |
|
remove_hook_from_submodules(model) |
|
|
|
if isinstance(config, PromptLearningConfig) and is_trainable: |
|
raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.") |
|
else: |
|
config.inference_mode = not is_trainable |
|
|
|
if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys(): |
|
model = cls(model, config, adapter_name) |
|
else: |
|
model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config, adapter_name) |
|
model.load_adapter(model_id, adapter_name, **kwargs) |
|
return model |
|
|
|
def _setup_prompt_encoder(self, adapter_name): |
|
config = self.peft_config[adapter_name] |
|
self.prompt_encoder = torch.nn.ModuleDict({}) |
|
self.prompt_tokens = {} |
|
transformer_backbone = None |
|
for name, module in self.base_model.named_children(): |
|
for param in module.parameters(): |
|
param.requires_grad = False |
|
if isinstance(module, PreTrainedModel): |
|
|
|
if transformer_backbone is None: |
|
transformer_backbone = module |
|
self.transformer_backbone_name = name |
|
|
|
if config.num_transformer_submodules is None: |
|
config.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1 |
|
|
|
for named_param, value in list(transformer_backbone.named_parameters()): |
|
if value.shape[0] == self.base_model.config.vocab_size: |
|
self.word_embeddings = transformer_backbone.get_submodule(named_param.replace(".weight", "")) |
|
break |
|
|
|
if config.peft_type == PeftType.PROMPT_TUNING: |
|
prompt_encoder = PromptEmbedding(config, self.word_embeddings) |
|
elif config.peft_type == PeftType.P_TUNING: |
|
prompt_encoder = PromptEncoder(config) |
|
elif config.peft_type == PeftType.PREFIX_TUNING: |
|
prompt_encoder = PrefixEncoder(config) |
|
else: |
|
raise ValueError("Not supported") |
|
self.prompt_encoder.update(torch.nn.ModuleDict({adapter_name: prompt_encoder})) |
|
self.prompt_tokens[adapter_name] = torch.arange( |
|
config.num_virtual_tokens * config.num_transformer_submodules |
|
).long() |
|
|
|
def get_prompt_embedding_to_save(self, adapter_name): |
|
""" |
|
Returns the prompt embedding to save when saving the model. Only applicable when `peft_config.peft_type != |
|
PeftType.LORA`. |
|
""" |
|
prompt_tokens = self.prompt_tokens[adapter_name].unsqueeze(0).expand(1, -1).to(self.device) |
|
if self.peft_config[adapter_name].peft_type == PeftType.PREFIX_TUNING: |
|
prompt_tokens = prompt_tokens[:, : self.peft_config[adapter_name].num_virtual_tokens] |
|
prompt_embeddings = self.prompt_encoder[adapter_name](prompt_tokens) |
|
return prompt_embeddings[0].detach().cpu() |
|
|
|
def get_prompt(self, batch_size): |
|
""" |
|
Returns the virtual prompts to use for Peft. Only applicable when `peft_config.peft_type != PeftType.LORA`. |
|
""" |
|
peft_config = self.active_peft_config |
|
prompt_encoder = self.prompt_encoder[self.active_adapter] |
|
prompt_tokens = self.prompt_tokens[self.active_adapter].unsqueeze(0).expand(batch_size, -1).to(self.device) |
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
prompt_tokens = prompt_tokens[:, : peft_config.num_virtual_tokens] |
|
if peft_config.inference_mode: |
|
past_key_values = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1) |
|
else: |
|
past_key_values = prompt_encoder(prompt_tokens) |
|
past_key_values = past_key_values.view( |
|
batch_size, |
|
peft_config.num_virtual_tokens, |
|
peft_config.num_layers * 2, |
|
peft_config.num_attention_heads, |
|
peft_config.token_dim // peft_config.num_attention_heads, |
|
) |
|
if peft_config.num_transformer_submodules == 2: |
|
past_key_values = torch.cat([past_key_values, past_key_values], dim=2) |
|
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split( |
|
peft_config.num_transformer_submodules * 2 |
|
) |
|
if TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING.get(self.config.model_type, None) is not None: |
|
post_process_fn = TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING[self.config.model_type] |
|
past_key_values = post_process_fn(past_key_values) |
|
return past_key_values |
|
else: |
|
if peft_config.inference_mode: |
|
prompts = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1) |
|
else: |
|
prompts = prompt_encoder(prompt_tokens) |
|
return prompts |
|
|
|
def print_trainable_parameters(self): |
|
""" |
|
Prints the number of trainable parameters in the model. |
|
""" |
|
trainable_params = 0 |
|
all_param = 0 |
|
for _, param in self.named_parameters(): |
|
num_params = param.numel() |
|
|
|
if num_params == 0 and hasattr(param, "ds_numel"): |
|
num_params = param.ds_numel |
|
|
|
all_param += num_params |
|
if param.requires_grad: |
|
trainable_params += num_params |
|
print( |
|
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" |
|
) |
|
|
|
def __getattr__(self, name: str): |
|
"""Forward missing attributes to the wrapped module.""" |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.base_model, name) |
|
|
|
def forward(self, *args, **kwargs): |
|
""" |
|
Forward pass of the model. |
|
""" |
|
return self.get_base_model()(*args, **kwargs) |
|
|
|
@contextmanager |
|
def disable_adapter(self): |
|
""" |
|
Disables the adapter module. |
|
""" |
|
if isinstance(self.active_peft_config, PromptLearningConfig): |
|
old_forward = self.forward |
|
self.forward = self.base_model.forward |
|
else: |
|
self.base_model.disable_adapter_layers() |
|
yield |
|
if isinstance(self.active_peft_config, PromptLearningConfig): |
|
self.forward = old_forward |
|
else: |
|
self.base_model.enable_adapter_layers() |
|
|
|
def get_base_model(self): |
|
""" |
|
Returns the base model. |
|
""" |
|
return self.base_model if isinstance(self.active_peft_config, PromptLearningConfig) else self.base_model.model |
|
|
|
def add_adapter(self, adapter_name, peft_config): |
|
if peft_config.peft_type != self.peft_type: |
|
raise ValueError( |
|
f"Cannot combine adapters with different peft types. " |
|
f"Found {self.peft_type} and {peft_config.peft_type}." |
|
) |
|
self.peft_config[adapter_name] = peft_config |
|
if isinstance(peft_config, PromptLearningConfig): |
|
self._setup_prompt_encoder(adapter_name) |
|
else: |
|
self.base_model.add_adapter(adapter_name, peft_config) |
|
|
|
self.set_additional_trainable_modules(peft_config, adapter_name) |
|
|
|
def set_additional_trainable_modules(self, peft_config, adapter_name): |
|
if getattr(peft_config, "modules_to_save", None) is not None: |
|
if self.modules_to_save is None: |
|
self.modules_to_save = set(peft_config.modules_to_save) |
|
else: |
|
self.modules_to_save.update(peft_config.modules_to_save) |
|
_set_trainable(self, adapter_name) |
|
|
|
def load_adapter(self, model_id, adapter_name, is_trainable=False, **kwargs): |
|
from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING |
|
|
|
if adapter_name not in self.peft_config: |
|
|
|
peft_config = PEFT_TYPE_TO_CONFIG_MAPPING[ |
|
PeftConfig.from_pretrained(model_id, subfolder=kwargs.get("subfolder", None)).peft_type |
|
].from_pretrained(model_id, subfolder=kwargs.get("subfolder", None)) |
|
if isinstance(peft_config, PromptLearningConfig) and is_trainable: |
|
raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.") |
|
else: |
|
peft_config.inference_mode = not is_trainable |
|
self.add_adapter(adapter_name, peft_config) |
|
|
|
|
|
path = os.path.join(model_id, kwargs["subfolder"]) if kwargs.get("subfolder", None) is not None else model_id |
|
|
|
if os.path.exists(os.path.join(path, WEIGHTS_NAME)): |
|
filename = os.path.join(path, WEIGHTS_NAME) |
|
else: |
|
try: |
|
filename = hf_hub_download(model_id, WEIGHTS_NAME, subfolder=kwargs.get("subfolder", None)) |
|
except: |
|
raise ValueError( |
|
f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. " |
|
f"Please check that the file {WEIGHTS_NAME} is present at {model_id}." |
|
) |
|
|
|
adapters_weights = torch.load( |
|
filename, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
) |
|
|
|
set_peft_model_state_dict(self, adapters_weights, adapter_name=adapter_name) |
|
if ( |
|
(getattr(self, "hf_device_map", None) is not None) |
|
and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0) |
|
and len(self.peft_config) == 1 |
|
): |
|
device_map = kwargs.get("device_map", "auto") |
|
max_memory = kwargs.get("max_memory", None) |
|
offload_dir = kwargs.get("offload_folder", None) |
|
offload_index = kwargs.get("offload_index", None) |
|
|
|
dispatch_model_kwargs = {} |
|
|
|
|
|
if "offload_index" in inspect.signature(dispatch_model).parameters: |
|
dispatch_model_kwargs["offload_index"] = offload_index |
|
|
|
no_split_module_classes = self._no_split_modules |
|
|
|
if device_map != "sequential": |
|
max_memory = get_balanced_memory( |
|
self, |
|
max_memory=max_memory, |
|
no_split_module_classes=no_split_module_classes, |
|
low_zero=(device_map == "balanced_low_0"), |
|
) |
|
if isinstance(device_map, str): |
|
device_map = infer_auto_device_map( |
|
self, max_memory=max_memory, no_split_module_classes=no_split_module_classes |
|
) |
|
dispatch_model( |
|
self, |
|
device_map=device_map, |
|
offload_dir=offload_dir, |
|
**dispatch_model_kwargs, |
|
) |
|
hook = AlignDevicesHook(io_same_device=True) |
|
if isinstance(self.peft_config[adapter_name], PromptLearningConfig): |
|
remove_hook_from_submodules(self.prompt_encoder) |
|
add_hook_to_module(self.get_base_model(), hook) |
|
|
|
|
|
self.eval() |
|
|
|
def set_adapter(self, adapter_name): |
|
""" |
|
Sets the active adapter. |
|
""" |
|
if adapter_name not in self.peft_config: |
|
raise ValueError(f"Adapter {adapter_name} not found.") |
|
self.active_adapter = adapter_name |
|
if not isinstance(self.peft_config[adapter_name], PromptLearningConfig): |
|
self.base_model.set_adapter(adapter_name) |
|
_set_adapter(self, adapter_name) |
|
|
|
@property |
|
def active_peft_config(self): |
|
return self.peft_config[self.active_adapter] |
|
|
|
|
|
|
|
class PeftModelForCausalLM(PeftModel): |
|
""" |
|
Peft model for causal language modeling. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): Base transformer model. |
|
peft_config ([`PeftConfig`]): Peft config. |
|
|
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForCausalLM |
|
>>> from peft import PeftModelForCausalLM, get_peft_config |
|
|
|
>>> config = { |
|
... "peft_type": "PREFIX_TUNING", |
|
... "task_type": "CAUSAL_LM", |
|
... "inference_mode": False, |
|
... "num_virtual_tokens": 20, |
|
... "token_dim": 1280, |
|
... "num_transformer_submodules": 1, |
|
... "num_attention_heads": 20, |
|
... "num_layers": 36, |
|
... "encoder_hidden_size": 1280, |
|
... "prefix_projection": False, |
|
... "postprocess_past_key_value_function": None, |
|
... } |
|
|
|
>>> peft_config = get_peft_config(config) |
|
>>> model = AutoModelForCausalLM.from_pretrained("gpt2-large") |
|
>>> peft_model = PeftModelForCausalLM(model, peft_config) |
|
>>> peft_model.print_trainable_parameters() |
|
trainable params: 1843200 || all params: 775873280 || trainable%: 0.23756456724479544 |
|
``` |
|
""" |
|
|
|
def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): |
|
super().__init__(model, peft_config, adapter_name) |
|
self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
audio_input=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
peft_config = self.active_peft_config |
|
if not isinstance(peft_config, PromptLearningConfig): |
|
return self.base_model( |
|
input_ids=input_ids, |
|
audio_input=audio_input, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
batch_size = input_ids.shape[0] |
|
if attention_mask is not None: |
|
|
|
prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device) |
|
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) |
|
|
|
if kwargs.get("position_ids", None) is not None: |
|
warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") |
|
kwargs["position_ids"] = None |
|
if kwargs.get("token_type_ids", None) is not None: |
|
warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids") |
|
kwargs["token_type_ids"] = None |
|
kwargs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"labels": labels, |
|
"output_attentions": output_attentions, |
|
"output_hidden_states": output_hidden_states, |
|
"return_dict": return_dict, |
|
} |
|
) |
|
|
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
past_key_values = self.get_prompt(batch_size) |
|
print('goes to loop forward 2') |
|
return self.base_model(input_ids=input_ids, past_key_values=past_key_values, **kwargs) |
|
else: |
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
if labels is not None: |
|
prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(self.device) |
|
kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1) |
|
prompts = self.get_prompt(batch_size=batch_size) |
|
prompts = prompts.to(inputs_embeds.dtype) |
|
inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) |
|
print('goes to loop forward 3') |
|
return self.base_model(inputs_embeds=inputs_embeds, **kwargs) |
|
|
|
def generate(self, **kwargs): |
|
peft_config = self.active_peft_config |
|
self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation |
|
try: |
|
if not isinstance(peft_config, PromptLearningConfig): |
|
outputs = self.base_model.generate(**kwargs) |
|
else: |
|
if "input_ids" not in kwargs: |
|
raise ValueError("input_ids must be provided for Peft model generation") |
|
|
|
|
|
|
|
if kwargs.get("attention_mask", None) is not None and peft_config.peft_type in [ |
|
PeftType.PROMPT_TUNING, |
|
PeftType.P_TUNING, |
|
]: |
|
|
|
prefix_attention_mask = torch.ones( |
|
kwargs["input_ids"].shape[0], peft_config.num_virtual_tokens |
|
).to(kwargs["input_ids"].device) |
|
kwargs["attention_mask"] = torch.cat((prefix_attention_mask, kwargs["attention_mask"]), dim=1) |
|
|
|
if kwargs.get("position_ids", None) is not None: |
|
warnings.warn( |
|
"Position ids are not supported for parameter efficient tuning. Ignoring position ids." |
|
) |
|
kwargs["position_ids"] = None |
|
if kwargs.get("token_type_ids", None) is not None: |
|
warnings.warn( |
|
"Token type ids are not supported for parameter efficient tuning. Ignoring token type ids" |
|
) |
|
kwargs["token_type_ids"] = None |
|
|
|
outputs = self.base_model.generate(**kwargs) |
|
except: |
|
self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation |
|
raise |
|
else: |
|
self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation |
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, *args, **kwargs): |
|
peft_config = self.active_peft_config |
|
model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs) |
|
if isinstance(peft_config, PromptLearningConfig): |
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
prefix_attention_mask = torch.ones( |
|
model_kwargs["input_ids"].shape[0], peft_config.num_virtual_tokens |
|
).to(model_kwargs["input_ids"].device) |
|
model_kwargs["attention_mask"] = torch.cat( |
|
(prefix_attention_mask, model_kwargs["attention_mask"]), dim=1 |
|
) |
|
|
|
if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
past_key_values = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0]) |
|
|
|
if self.base_model_torch_dtype is not None: |
|
|
|
if isinstance(past_key_values[0], tuple): |
|
past_key_values = tuple( |
|
tuple( |
|
past_key_value.to(self.base_model_torch_dtype) |
|
for past_key_value in past_key_value_tuple |
|
) |
|
for past_key_value_tuple in past_key_values |
|
) |
|
else: |
|
past_key_values = tuple( |
|
past_key_value.to(self.base_model_torch_dtype) for past_key_value in past_key_values |
|
) |
|
|
|
model_kwargs["past_key_values"] = past_key_values |
|
else: |
|
if model_kwargs["past_key_values"] is None: |
|
inputs_embeds = self.word_embeddings(model_kwargs["input_ids"]) |
|
prompts = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0]) |
|
prompts = prompts.to(inputs_embeds.dtype) |
|
model_kwargs["inputs_embeds"] = torch.cat((prompts, inputs_embeds), dim=1) |
|
model_kwargs["input_ids"] = None |
|
|
|
return model_kwargs |
|
|
|
|
|
class PeftModelForSeq2SeqLM(PeftModel): |
|
""" |
|
Peft model for sequence-to-sequence language modeling. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): Base transformer model. |
|
peft_config ([`PeftConfig`]): Peft config. |
|
|
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForSeq2SeqLM |
|
>>> from peft import PeftModelForSeq2SeqLM, get_peft_config |
|
|
|
>>> config = { |
|
... "peft_type": "LORA", |
|
... "task_type": "SEQ_2_SEQ_LM", |
|
... "inference_mode": False, |
|
... "r": 8, |
|
... "target_modules": ["q", "v"], |
|
... "lora_alpha": 32, |
|
... "lora_dropout": 0.1, |
|
... "merge_weights": False, |
|
... "fan_in_fan_out": False, |
|
... "enable_lora": None, |
|
... "bias": "none", |
|
... } |
|
|
|
>>> peft_config = get_peft_config(config) |
|
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") |
|
>>> peft_model = PeftModelForSeq2SeqLM(model, peft_config) |
|
>>> peft_model.print_trainable_parameters() |
|
trainable params: 884736 || all params: 223843584 || trainable%: 0.3952474242013566 |
|
``` |
|
""" |
|
|
|
def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): |
|
super().__init__(model, peft_config, adapter_name) |
|
self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation |
|
self.base_model_prepare_encoder_decoder_kwargs_for_generation = ( |
|
self.base_model._prepare_encoder_decoder_kwargs_for_generation |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
decoder_inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
peft_config = self.active_peft_config |
|
if not isinstance(peft_config, PromptLearningConfig): |
|
return self.base_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
decoder_input_ids=decoder_input_ids, |
|
decoder_attention_mask=decoder_attention_mask, |
|
decoder_inputs_embeds=decoder_inputs_embeds, |
|
labels=labels, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
batch_size = input_ids.shape[0] |
|
if decoder_attention_mask is not None: |
|
|
|
prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device) |
|
decoder_attention_mask = torch.cat((prefix_attention_mask, decoder_attention_mask), dim=1) |
|
|
|
if kwargs.get("position_ids", None) is not None: |
|
warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") |
|
kwargs["position_ids"] = None |
|
if kwargs.get("token_type_ids", None) is not None: |
|
warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids") |
|
kwargs["token_type_ids"] = None |
|
kwargs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
"labels": labels, |
|
"output_attentions": output_attentions, |
|
"output_hidden_states": output_hidden_states, |
|
"return_dict": return_dict, |
|
} |
|
) |
|
|
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
past_key_values = self.get_prompt(batch_size) |
|
return self.base_model( |
|
input_ids=input_ids, decoder_input_ids=decoder_input_ids, past_key_values=past_key_values, **kwargs |
|
) |
|
else: |
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
if decoder_inputs_embeds is None and decoder_input_ids is None: |
|
decoder_input_ids = shift_tokens_right( |
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id |
|
) |
|
decoder_inputs_embeds = self.word_embeddings(decoder_input_ids) |
|
|
|
if attention_mask is not None: |
|
|
|
prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device) |
|
kwargs["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1) |
|
|
|
if labels is not None: |
|
if peft_config.num_transformer_submodules == 1: |
|
kwargs["labels"] = labels |
|
elif peft_config.num_transformer_submodules == 2: |
|
prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(self.device) |
|
kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1) |
|
prompts = self.get_prompt(batch_size=batch_size) |
|
prompts = prompts.to(inputs_embeds.dtype) |
|
inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1) |
|
if peft_config.num_transformer_submodules == 1: |
|
return self.base_model(inputs_embeds=inputs_embeds, **kwargs) |
|
elif peft_config.num_transformer_submodules == 2: |
|
decoder_inputs_embeds = torch.cat( |
|
(prompts[:, peft_config.num_virtual_tokens :], decoder_inputs_embeds), dim=1 |
|
) |
|
return self.base_model( |
|
inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs |
|
) |
|
|
|
def generate(self, **kwargs): |
|
peft_config = self.active_peft_config |
|
self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation |
|
self.base_model._prepare_encoder_decoder_kwargs_for_generation = ( |
|
self._prepare_encoder_decoder_kwargs_for_generation |
|
) |
|
try: |
|
if not isinstance(peft_config, PromptLearningConfig): |
|
outputs = self.base_model.generate(**kwargs) |
|
else: |
|
if "input_ids" not in kwargs: |
|
raise ValueError("input_ids must be provided for Peft model generation") |
|
if kwargs.get("position_ids", None) is not None: |
|
warnings.warn( |
|
"Position ids are not supported for parameter efficient tuning. Ignoring position ids." |
|
) |
|
kwargs["position_ids"] = None |
|
if kwargs.get("token_type_ids", None) is not None: |
|
warnings.warn( |
|
"Token type ids are not supported for parameter efficient tuning. Ignoring token type ids" |
|
) |
|
kwargs["token_type_ids"] = None |
|
|
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
outputs = self.base_model.generate(**kwargs) |
|
else: |
|
raise NotImplementedError |
|
except: |
|
self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation |
|
self.base_model._prepare_encoder_decoder_kwargs_for_generation = ( |
|
self.base_model_prepare_encoder_decoder_kwargs_for_generation |
|
) |
|
raise |
|
else: |
|
self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation |
|
self.base_model._prepare_encoder_decoder_kwargs_for_generation = ( |
|
self.base_model_prepare_encoder_decoder_kwargs_for_generation |
|
) |
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, *args, **kwargs): |
|
peft_config = self.active_peft_config |
|
model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs) |
|
if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
batch_size = model_kwargs["decoder_input_ids"].shape[0] |
|
past_key_values = self.get_prompt(batch_size) |
|
if self.base_model_torch_dtype is not None: |
|
|
|
if isinstance(past_key_values[0], tuple): |
|
past_key_values = tuple( |
|
tuple( |
|
past_key_value.to(self.base_model_torch_dtype) for past_key_value in past_key_value_tuple |
|
) |
|
for past_key_value_tuple in past_key_values |
|
) |
|
else: |
|
past_key_values = tuple( |
|
past_key_value.to(self.base_model_torch_dtype) for past_key_value in past_key_values |
|
) |
|
model_kwargs["past_key_values"] = past_key_values |
|
|
|
return model_kwargs |
|
|
|
|
|
class PeftModelForTokenClassification(PeftModel): |
|
""" |
|
Peft model for token classification tasks. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): Base transformer model. |
|
peft_config ([`PeftConfig`]): Peft config. |
|
|
|
**Attributes**: |
|
- **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model. |
|
- **cls_layer_name** (`str`) -- The name of the classification layer. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForSequenceClassification |
|
>>> from peft import PeftModelForTokenClassification, get_peft_config |
|
|
|
>>> config = { |
|
... "peft_type": "PREFIX_TUNING", |
|
... "task_type": "TOKEN_CLS", |
|
... "inference_mode": False, |
|
... "num_virtual_tokens": 20, |
|
... "token_dim": 768, |
|
... "num_transformer_submodules": 1, |
|
... "num_attention_heads": 12, |
|
... "num_layers": 12, |
|
... "encoder_hidden_size": 768, |
|
... "prefix_projection": False, |
|
... "postprocess_past_key_value_function": None, |
|
... } |
|
|
|
>>> peft_config = get_peft_config(config) |
|
>>> model = AutoModelForTokenClassification.from_pretrained("bert-base-cased") |
|
>>> peft_model = PeftModelForTokenClassification(model, peft_config) |
|
>>> peft_model.print_trainable_parameters() |
|
trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 |
|
``` |
|
""" |
|
|
|
def __init__(self, model, peft_config: PeftConfig = None, adapter_name="default"): |
|
super().__init__(model, peft_config, adapter_name) |
|
if self.modules_to_save is None: |
|
self.modules_to_save = {"classifier", "score"} |
|
else: |
|
self.modules_to_save.update({"classifier", "score"}) |
|
|
|
for name, _ in self.base_model.named_children(): |
|
if any(module_name in name for module_name in self.modules_to_save): |
|
self.cls_layer_name = name |
|
break |
|
|
|
|
|
_set_trainable(self, adapter_name) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
peft_config = self.active_peft_config |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if not isinstance(peft_config, PromptLearningConfig): |
|
return self.base_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
batch_size = input_ids.shape[0] |
|
if attention_mask is not None: |
|
|
|
prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device) |
|
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) |
|
if kwargs.get("position_ids", None) is not None: |
|
warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") |
|
kwargs["position_ids"] = None |
|
kwargs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"labels": labels, |
|
"output_attentions": output_attentions, |
|
"output_hidden_states": output_hidden_states, |
|
"return_dict": return_dict, |
|
} |
|
) |
|
|
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) |
|
else: |
|
if kwargs.get("token_type_ids", None) is not None: |
|
kwargs["token_type_ids"] = torch.cat( |
|
( |
|
torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.device), |
|
kwargs["token_type_ids"], |
|
), |
|
dim=1, |
|
).long() |
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
prompts = self.get_prompt(batch_size=batch_size) |
|
prompts = prompts.to(inputs_embeds.dtype) |
|
inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) |
|
return self.base_model(inputs_embeds=inputs_embeds, **kwargs) |
|
|
|
def _prefix_tuning_forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
batch_size = input_ids.shape[0] |
|
past_key_values = self.get_prompt(batch_size) |
|
fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) |
|
kwargs.update( |
|
{ |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"inputs_embeds": inputs_embeds, |
|
"output_attentions": output_attentions, |
|
"output_hidden_states": output_hidden_states, |
|
"return_dict": return_dict, |
|
"past_key_values": past_key_values, |
|
} |
|
) |
|
if "past_key_values" in fwd_params: |
|
return self.base_model(labels=labels, **kwargs) |
|
else: |
|
transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) |
|
fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) |
|
if "past_key_values" not in fwd_params: |
|
raise ValueError("Model does not support past key values which are required for prefix tuning.") |
|
outputs = transformer_backbone_name(**kwargs) |
|
sequence_output = outputs[0] |
|
if "dropout" in [name for name, _ in list(self.base_model.named_children())]: |
|
sequence_output = self.base_model.dropout(sequence_output) |
|
logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output) |
|
|
|
loss = None |
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class PeftModelForSequenceClassification(PeftModel): |
|
""" |
|
Peft model for sequence classification tasks. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): Base transformer model. |
|
peft_config ([`PeftConfig`]): Peft config. |
|
|
|
**Attributes**: |
|
- **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model. |
|
- **cls_layer_name** (`str`) -- The name of the classification layer. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForSequenceClassification |
|
>>> from peft import PeftModelForSequenceClassification, get_peft_config |
|
|
|
>>> config = { |
|
... "peft_type": "PREFIX_TUNING", |
|
... "task_type": "SEQ_CLS", |
|
... "inference_mode": False, |
|
... "num_virtual_tokens": 20, |
|
... "token_dim": 768, |
|
... "num_transformer_submodules": 1, |
|
... "num_attention_heads": 12, |
|
... "num_layers": 12, |
|
... "encoder_hidden_size": 768, |
|
... "prefix_projection": False, |
|
... "postprocess_past_key_value_function": None, |
|
... } |
|
|
|
>>> peft_config = get_peft_config(config) |
|
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased") |
|
>>> peft_model = PeftModelForSequenceClassification(model, peft_config) |
|
>>> peft_model.print_trainable_parameters() |
|
trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117 |
|
``` |
|
""" |
|
|
|
def __init__(self, model, peft_config: PeftConfig, adapter_name="default"): |
|
super().__init__(model, peft_config, adapter_name) |
|
if self.modules_to_save is None: |
|
self.modules_to_save = {"classifier", "score"} |
|
else: |
|
self.modules_to_save.update({"classifier", "score"}) |
|
|
|
for name, _ in self.base_model.named_children(): |
|
if any(module_name in name for module_name in self.modules_to_save): |
|
self.cls_layer_name = name |
|
break |
|
|
|
|
|
_set_trainable(self, adapter_name) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
peft_config = self.active_peft_config |
|
if not isinstance(peft_config, PromptLearningConfig): |
|
return self.base_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
batch_size = input_ids.shape[0] |
|
if attention_mask is not None: |
|
|
|
prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device) |
|
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1) |
|
if kwargs.get("position_ids", None) is not None: |
|
warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.") |
|
kwargs["position_ids"] = None |
|
kwargs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"labels": labels, |
|
"output_attentions": output_attentions, |
|
"output_hidden_states": output_hidden_states, |
|
"return_dict": return_dict, |
|
} |
|
) |
|
|
|
if peft_config.peft_type == PeftType.PREFIX_TUNING: |
|
return self._prefix_tuning_forward(input_ids=input_ids, **kwargs) |
|
else: |
|
if kwargs.get("token_type_ids", None) is not None: |
|
kwargs["token_type_ids"] = torch.cat( |
|
( |
|
torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.device), |
|
kwargs["token_type_ids"], |
|
), |
|
dim=1, |
|
).long() |
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
prompts = self.get_prompt(batch_size=batch_size) |
|
prompts = prompts.to(inputs_embeds.dtype) |
|
inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1) |
|
return self.base_model(inputs_embeds=inputs_embeds, **kwargs) |
|
|
|
def _prefix_tuning_forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
batch_size = input_ids.shape[0] |
|
past_key_values = self.get_prompt(batch_size) |
|
fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys()) |
|
kwargs.update( |
|
{ |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"inputs_embeds": inputs_embeds, |
|
"output_attentions": output_attentions, |
|
"output_hidden_states": output_hidden_states, |
|
"return_dict": return_dict, |
|
"past_key_values": past_key_values, |
|
} |
|
) |
|
if "past_key_values" in fwd_params: |
|
return self.base_model(labels=labels, **kwargs) |
|
else: |
|
transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name) |
|
fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys()) |
|
if "past_key_values" not in fwd_params: |
|
raise ValueError("Model does not support past key values which are required for prefix tuning.") |
|
outputs = transformer_backbone_name(**kwargs) |
|
pooled_output = outputs[1] if len(outputs) > 1 else outputs[0] |
|
if "dropout" in [name for name, _ in list(self.base_model.named_children())]: |
|
pooled_output = self.base_model.dropout(pooled_output) |
|
logits = self.base_model.get_submodule(self.cls_layer_name)(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.base_model.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.base_model.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.base_model.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.base_model.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |