Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
from flask import Flask, request, jsonify
|
4 |
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
5 |
from PIL import Image
|
6 |
-
import
|
7 |
-
import base64
|
8 |
|
9 |
-
# Get API token from environment
|
10 |
api_token = os.getenv("HF_TOKEN").strip()
|
11 |
|
12 |
-
app = Flask(__name__)
|
13 |
-
|
14 |
# Quantization configuration
|
15 |
bnb_config = BitsAndBytesConfig(
|
16 |
load_in_4bit=True,
|
@@ -19,7 +15,7 @@ bnb_config = BitsAndBytesConfig(
|
|
19 |
bnb_4bit_compute_dtype=torch.float16
|
20 |
)
|
21 |
|
22 |
-
# Load model
|
23 |
model = AutoModel.from_pretrained(
|
24 |
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
25 |
quantization_config=bnb_config,
|
@@ -35,45 +31,42 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
35 |
token=api_token
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
image_data = base64.b64decode(base64_string)
|
41 |
-
image = Image.open(io.BytesIO(image_data)).convert('RGB')
|
42 |
-
return image
|
43 |
-
|
44 |
-
@app.route('/analyze', methods=['POST'])
|
45 |
-
def analyze_input():
|
46 |
-
data = request.json
|
47 |
-
question = data.get('question', '')
|
48 |
-
base64_image = data.get('image', None)
|
49 |
-
|
50 |
try:
|
51 |
-
|
52 |
-
|
53 |
-
image =
|
54 |
inputs = model.prepare_inputs_for_generation(
|
55 |
input_ids=tokenizer(question, return_tensors="pt").input_ids,
|
56 |
images=[image]
|
57 |
)
|
58 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
59 |
else:
|
60 |
-
#
|
61 |
inputs = tokenizer(question, return_tensors="pt")
|
62 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
63 |
|
64 |
# Decode response
|
65 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
-
|
67 |
-
return jsonify({
|
68 |
-
'status': 'success',
|
69 |
-
'response': response
|
70 |
-
})
|
71 |
|
72 |
except Exception as e:
|
73 |
-
return
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
4 |
from PIL import Image
|
5 |
+
import os
|
|
|
6 |
|
7 |
+
# Get API token from environment variables
|
8 |
api_token = os.getenv("HF_TOKEN").strip()
|
9 |
|
|
|
|
|
10 |
# Quantization configuration
|
11 |
bnb_config = BitsAndBytesConfig(
|
12 |
load_in_4bit=True,
|
|
|
15 |
bnb_4bit_compute_dtype=torch.float16
|
16 |
)
|
17 |
|
18 |
+
# Load the model and tokenizer
|
19 |
model = AutoModel.from_pretrained(
|
20 |
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
21 |
quantization_config=bnb_config,
|
|
|
31 |
token=api_token
|
32 |
)
|
33 |
|
34 |
+
# Function to handle inputs
|
35 |
+
def process_query(image, question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
+
if image:
|
38 |
+
# Process image and text
|
39 |
+
image = image.convert('RGB')
|
40 |
inputs = model.prepare_inputs_for_generation(
|
41 |
input_ids=tokenizer(question, return_tensors="pt").input_ids,
|
42 |
images=[image]
|
43 |
)
|
44 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
45 |
else:
|
46 |
+
# Process text-only
|
47 |
inputs = tokenizer(question, return_tensors="pt")
|
48 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
49 |
|
50 |
# Decode response
|
51 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
+
return response
|
|
|
|
|
|
|
|
|
53 |
|
54 |
except Exception as e:
|
55 |
+
return f"Error: {str(e)}"
|
56 |
+
|
57 |
+
# Define Gradio interface
|
58 |
+
interface = gr.Interface(
|
59 |
+
fn=process_query,
|
60 |
+
inputs=[
|
61 |
+
gr.Image(type="pil", label="Upload an Image (Optional)"),
|
62 |
+
gr.Textbox(label="Enter a Question")
|
63 |
+
],
|
64 |
+
outputs="text",
|
65 |
+
title="ContactDoctor Multimodal Medical Assistant",
|
66 |
+
description="Provide an image and/or question to get AI-powered medical advice.",
|
67 |
+
enable_api=True # Enable API for external calls
|
68 |
+
)
|
69 |
|
70 |
+
# Launch the app
|
71 |
+
if __name__ == "__main__":
|
72 |
+
interface.launch()
|