Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,69 +1,57 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
-
import torch
|
| 4 |
-
import os
|
| 5 |
|
| 6 |
# Retrieve the token from environment variables
|
| 7 |
-
api_token = os.getenv("HF_TOKEN").strip()
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Load the
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
-
model =
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
trust_remote_code=True,
|
| 23 |
-
|
| 24 |
-
torch_dtype=torch.float16 # Mixed precision for faster inference
|
| 25 |
)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
| 32 |
-
|
| 33 |
-
# Ensure input tensor is sent to the same device as the model
|
| 34 |
-
input_ids = inputs["input_ids"].to(model.device)
|
| 35 |
-
|
| 36 |
-
# Add batch dimension (if missing)
|
| 37 |
-
if len(input_ids.shape) == 1: # If shape is (seq_len,)
|
| 38 |
-
input_ids = input_ids.unsqueeze(0) # Add batch dimension: (1, seq_len)
|
| 39 |
-
|
| 40 |
-
# Generate a response using the model
|
| 41 |
-
outputs = model.generate(
|
| 42 |
-
input_ids,
|
| 43 |
-
max_length=256, # Limit the output length
|
| 44 |
-
num_return_sequences=1, # Generate a single response
|
| 45 |
-
temperature=0.7, # Adjust for creativity vs. determinism
|
| 46 |
-
top_p=0.9, # Nucleus sampling
|
| 47 |
-
top_k=50 # Top-k sampling
|
| 48 |
-
)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
#
|
| 59 |
iface = gr.Interface(
|
| 60 |
-
fn=
|
| 61 |
-
inputs=
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
-
# Launch the Gradio app
|
| 68 |
if __name__ == "__main__":
|
| 69 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
# Retrieve the token from environment variables
|
| 3 |
+
#api_token = os.getenv("HF_TOKEN").strip()
|
| 4 |
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
| 8 |
+
import gradio as gr
|
| 9 |
|
| 10 |
+
# Load the model and tokenizer
|
| 11 |
+
bnb_config = BitsAndBytesConfig(
|
| 12 |
+
load_in_4bit=True,
|
| 13 |
+
bnb_4bit_quant_type="nf4",
|
| 14 |
+
bnb_4bit_use_double_quant=True,
|
| 15 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 16 |
)
|
| 17 |
|
| 18 |
+
model = AutoModel.from_pretrained(
|
| 19 |
+
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
| 20 |
+
quantization_config=bnb_config,
|
| 21 |
+
device_map="auto",
|
| 22 |
+
torch_dtype=torch.float16,
|
| 23 |
trust_remote_code=True,
|
| 24 |
+
attn_implementation="flash_attention_2",
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 28 |
+
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
| 29 |
+
trust_remote_code=True
|
| 30 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# Define the function to handle the input
|
| 33 |
+
def process_input(image, question):
|
| 34 |
+
image = Image.open(image).convert("RGB")
|
| 35 |
+
msgs = [{'role': 'user', 'content': [image, question]}]
|
| 36 |
+
res = model.chat(image=image, msgs=msgs, tokenizer=tokenizer, sampling=True, temperature=0.95, stream=True)
|
| 37 |
|
| 38 |
+
generated_text = ""
|
| 39 |
+
for new_text in res:
|
| 40 |
+
generated_text += new_text
|
| 41 |
+
return generated_text
|
| 42 |
|
| 43 |
+
# Gradio interface
|
| 44 |
iface = gr.Interface(
|
| 45 |
+
fn=process_input,
|
| 46 |
+
inputs=[
|
| 47 |
+
gr.Image(type="file", label="Upload Image"),
|
| 48 |
+
gr.Textbox(lines=2, label="Question")
|
| 49 |
+
],
|
| 50 |
+
outputs=gr.Textbox(label="Generated Response"),
|
| 51 |
+
title="BioMedical MultiModal Llama",
|
| 52 |
+
description="Upload an image and ask a medical question."
|
| 53 |
)
|
| 54 |
|
|
|
|
| 55 |
if __name__ == "__main__":
|
| 56 |
iface.launch()
|
| 57 |
+
|