Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the Hugging Face model and tokenizer
|
6 |
+
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
|
10 |
+
# Define the function to process user input
|
11 |
+
def generate_response(input_text):
|
12 |
+
try:
|
13 |
+
# Tokenize the input text
|
14 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
15 |
+
|
16 |
+
# Generate a response using the model
|
17 |
+
outputs = model.generate(
|
18 |
+
inputs["input_ids"],
|
19 |
+
max_length=256, # Limit the output length
|
20 |
+
num_return_sequences=1, # Generate a single response
|
21 |
+
temperature=0.7, # Adjust for creativity vs. determinism
|
22 |
+
top_p=0.9, # Nucleus sampling
|
23 |
+
top_k=50 # Top-k sampling
|
24 |
+
)
|
25 |
+
|
26 |
+
# Decode and return the generated text
|
27 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
return response
|
29 |
+
|
30 |
+
except Exception as e:
|
31 |
+
return f"Error: {str(e)}"
|
32 |
+
|
33 |
+
# Create a Gradio interface with API enabled
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=generate_response,
|
36 |
+
inputs="text",
|
37 |
+
outputs="text",
|
38 |
+
title="ContactDoctor Medical Assistant",
|
39 |
+
description="Provide input symptoms or queries and get AI-powered medical advice.",
|
40 |
+
enable_api=True # Enables API for external calls
|
41 |
+
)
|
42 |
+
|
43 |
+
# Launch the Gradio app
|
44 |
+
if __name__ == "__main__":
|
45 |
+
iface.launch()
|