souravmighty commited on
Commit
d307acf
1 Parent(s): ad134c3

added logo and changed the embeddings

Browse files
.chainlit/config.toml CHANGED
@@ -64,7 +64,7 @@ default_expand_messages = false
64
  hide_cot = false
65
 
66
  # Link to your github repo. This will add a github button in the UI's header.
67
- # github = ""
68
 
69
  # Specify a CSS file that can be used to customize the user interface.
70
  # The CSS file can be served from the public directory or via an external link.
 
64
  hide_cot = false
65
 
66
  # Link to your github repo. This will add a github button in the UI's header.
67
+ github = "https://github.com/souravmighty"
68
 
69
  # Specify a CSS file that can be used to customize the user interface.
70
  # The CSS file can be served from the public directory or via an external link.
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import PyPDF2
2
- from langchain_community.embeddings import OllamaEmbeddings
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain_community.vectorstores import Chroma
5
  from langchain.chains import ConversationalRetrievalChain
@@ -41,25 +41,6 @@ async def on_chat_start():
41
  ]
42
  ).send()
43
 
44
-
45
- await setup_agent(settings)
46
-
47
-
48
- @cl.on_settings_update
49
- async def setup_agent(settings):
50
- print("Setup agent with settings:", settings)
51
-
52
- user_env = cl.user_session.get("env")
53
- os.environ["GROQ_API_KEY"] = user_env.get("GROQ_API_KEY")
54
-
55
- # embeddings = OllamaEmbeddings(model="nomic-embed-text")
56
- # memory=get_memory()
57
-
58
- # docsearch = await cl.make_async(Chroma)(
59
- # persist_directory="./chroma_db",
60
- # embedding_function=embeddings
61
- # )
62
-
63
  files = None #Initialize variable to store uploaded files
64
 
65
  # Wait for the user to upload a file
@@ -92,17 +73,36 @@ async def setup_agent(settings):
92
  metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
93
 
94
  # Create a Chroma vector store
95
- embeddings = OllamaEmbeddings(model="nomic-embed-text")
 
96
  #embeddings = OllamaEmbeddings(model="llama2:7b")
97
  docsearch = await cl.make_async(Chroma.from_texts)(
98
- texts, embeddings, metadatas=metadatas
99
  )
100
-
 
101
  # Let the user know that the system is ready
102
  msg.content = f"Processing `{file.name}` done. You can now ask questions!"
103
  await msg.update()
104
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  memory=get_memory()
 
 
 
 
 
106
 
107
 
108
  # Create a chain that uses the Chroma vector store
 
1
  import PyPDF2
2
+ from langchain_community.embeddings import SentenceTransformerEmbeddings
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain_community.vectorstores import Chroma
5
  from langchain.chains import ConversationalRetrievalChain
 
41
  ]
42
  ).send()
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  files = None #Initialize variable to store uploaded files
45
 
46
  # Wait for the user to upload a file
 
73
  metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
74
 
75
  # Create a Chroma vector store
76
+ # embeddings = OllamaEmbeddings(model="nomic-embed-text")
77
+ embeddings = SentenceTransformerEmbeddings(model_name = "sentence-transformers/all-MiniLM-L6-v2")
78
  #embeddings = OllamaEmbeddings(model="llama2:7b")
79
  docsearch = await cl.make_async(Chroma.from_texts)(
80
+ texts, embeddings, metadatas=metadatas, persist_directory='./chroma_db'
81
  )
82
+ docsearch.persist()
83
+
84
  # Let the user know that the system is ready
85
  msg.content = f"Processing `{file.name}` done. You can now ask questions!"
86
  await msg.update()
87
 
88
+ await setup_agent(settings)
89
+
90
+
91
+ @cl.on_settings_update
92
+ async def setup_agent(settings):
93
+ print("Setup agent with settings:", settings)
94
+
95
+ user_env = cl.user_session.get("env")
96
+ os.environ["GROQ_API_KEY"] = user_env.get("GROQ_API_KEY")
97
+
98
+ # embeddings = OllamaEmbeddings(model="nomic-embed-text")
99
+ embeddings = SentenceTransformerEmbeddings(model_name = "sentence-transformers/all-MiniLM-L6-v2")
100
  memory=get_memory()
101
+
102
+ docsearch = await cl.make_async(Chroma)(
103
+ persist_directory="./chroma_db",
104
+ embedding_function=embeddings
105
+ )
106
 
107
 
108
  # Create a chain that uses the Chroma vector store
chroma_db/71a07f1e-d833-4c9a-a157-bfc7ef8305f1/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3c9fd302f000d7790aa403c2d0d8fec363fe46f30b07d53020b6e33b22435a9
3
+ size 1676000
chroma_db/71a07f1e-d833-4c9a-a157-bfc7ef8305f1/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
3
+ size 100
chroma_db/71a07f1e-d833-4c9a-a157-bfc7ef8305f1/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:756bb44282bd5346e3ab0f955749756f1f378b655ccd3c2ee9f8ae7cc5f92a9e
3
+ size 4000
chroma_db/71a07f1e-d833-4c9a-a157-bfc7ef8305f1/link_lists.bin ADDED
File without changes
chroma_db/chroma.sqlite3 ADDED
Binary file (262 kB). View file
 
public/logo_dark.png ADDED
public/logo_light.png ADDED