File size: 7,743 Bytes
06c138d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os,sys
parent_directory = os.path.dirname(os.path.abspath(__file__))
import logging,pdb
logger = logging.getLogger(__name__)

import librosa
import numpy as np
import soundfile as sf
import torch
from uvr5.lib.lib_v5 import nets_61968KB as Nets
from uvr5.lib.lib_v5 import spec_utils
from uvr5.lib.lib_v5.model_param_init import ModelParameters
from uvr5.lib.utils import inference


class AudioPre:
    def __init__(self, agg, model_path, device, is_half, tta=False):
        self.model_path = model_path
        self.device = device
        self.data = {
            # Processing Options
            "postprocess": False,
            "tta": tta,
            # Constants
            "window_size": 512,
            "agg": agg,
            "high_end_process": "mirroring",
        }
        mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v2.json"%parent_directory)
        model = Nets.CascadedASPPNet(mp.param["bins"] * 2)
        cpk = torch.load(model_path, map_location="cpu")
        model.load_state_dict(cpk)
        model.eval()
        if is_half:
            model = model.half().to(device)
        else:
            model = model.to(device)

        self.mp = mp
        self.model = model

    def _path_audio_(
        self, music_file, ins_root=None, vocal_root=None, format="flac", is_hp3=False
    ):
        if ins_root is None and vocal_root is None:
            return "No save root."
        name = os.path.basename(music_file)
        if ins_root is not None:
            os.makedirs(ins_root, exist_ok=True)
        if vocal_root is not None:
            os.makedirs(vocal_root, exist_ok=True)
        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
        bands_n = len(self.mp.param["band"])
        # print(bands_n)
        for d in range(bands_n, 0, -1):
            bp = self.mp.param["band"][d]
            if d == bands_n:  # high-end band
                (
                    X_wave[d],
                    _,
                ) = librosa.core.load(  # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
                    music_file,
                    bp["sr"],
                    False,
                    dtype=np.float32,
                    res_type=bp["res_type"],
                )
                if X_wave[d].ndim == 1:
                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
            else:  # lower bands
                X_wave[d] = librosa.core.resample(
                    X_wave[d + 1],
                    self.mp.param["band"][d + 1]["sr"],
                    bp["sr"],
                    res_type=bp["res_type"],
                )
            # Stft of wave source
            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
                X_wave[d],
                bp["hl"],
                bp["n_fft"],
                self.mp.param["mid_side"],
                self.mp.param["mid_side_b2"],
                self.mp.param["reverse"],
            )
            # pdb.set_trace()
            if d == bands_n and self.data["high_end_process"] != "none":
                input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
                    self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
                )
                input_high_end = X_spec_s[d][
                    :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
                ]

        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
        aggresive_set = float(self.data["agg"] / 100)
        aggressiveness = {
            "value": aggresive_set,
            "split_bin": self.mp.param["band"][1]["crop_stop"],
        }
        with torch.no_grad():
            pred, X_mag, X_phase = inference(
                X_spec_m, self.device, self.model, aggressiveness, self.data
            )
        # Postprocess
        if self.data["postprocess"]:
            pred_inv = np.clip(X_mag - pred, 0, np.inf)
            pred = spec_utils.mask_silence(pred, pred_inv)
        y_spec_m = pred * X_phase
        v_spec_m = X_spec_m - y_spec_m

        if is_hp3 == True:
            ins_root,vocal_root = vocal_root,ins_root

        if ins_root is not None:
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], y_spec_m, input_high_end, self.mp
                )
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(
                    y_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
            logger.info("%s instruments done" % name)
            if is_hp3 == True:
                head = "vocal_"
            else:
                head = "instrument_"
            if format in ["wav", "flac"]:
                sf.write(
                    os.path.join(
                        ins_root,
                        head + "{}_{}.{}".format(name, self.data["agg"], format),
                    ),
                    (np.array(wav_instrument)).astype("float32"),
                    self.mp.param["sr"],
                )  #
            else:
                path = os.path.join(
                    ins_root, head + "{}_{}.wav".format(name, self.data["agg"])
                )
                sf.write(
                    path,
                    (np.array(wav_instrument)).astype("float32"),
                    self.mp.param["sr"],
                )
                if os.path.exists(path):
                    opt_format_path = path[:-4] + ".%s" % format
                    os.system("ffmpeg -i %s -vn %s -q:a 2 -y" % (path, opt_format_path))
                    if os.path.exists(opt_format_path):
                        try:
                            os.remove(path)
                        except:
                            pass
        if vocal_root is not None:
            if is_hp3 == True:
                head = "instrument_"
            else:
                head = "vocal_"
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], v_spec_m, input_high_end, self.mp
                )
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(
                    v_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
            logger.info("%s vocals done" % name)
            if format in ["wav", "flac"]:
                sf.write(
                    os.path.join(
                        vocal_root,
                        head + "{}_{}.{}".format(name, self.data["agg"], format),
                    ),
                    (np.array(wav_vocals)).astype("float32"),
                    self.mp.param["sr"],
                )
            else:
                path = os.path.join(
                    vocal_root, head + "{}_{}.wav".format(name, self.data["agg"])
                )
                sf.write(
                    path,
                    (np.array(wav_vocals)).astype("float32"),
                    self.mp.param["sr"],
                )
                if os.path.exists(path):
                    opt_format_path = path[:-4] + ".%s" % format
                    os.system("ffmpeg -i %s -vn %s -q:a 2 -y" % (path, opt_format_path))
                    if os.path.exists(opt_format_path):
                        try:
                            os.remove(path)
                        except:
                            pass