Spaces:
Runtime error
Runtime error
# adapted for Zero GPU on Hugging Face | |
import spaces | |
import os | |
import glob | |
import json | |
import traceback | |
import logging | |
import gradio as gr | |
import numpy as np | |
import librosa | |
import torch | |
import asyncio | |
import ffmpeg | |
import subprocess | |
import sys | |
import io | |
import wave | |
from datetime import datetime | |
#from fairseq import checkpoint_utils | |
import urllib.request | |
import zipfile | |
import shutil | |
import gradio as gr | |
from textwrap import dedent | |
import pprint | |
import time | |
import re | |
import requests | |
import subprocess | |
from pathlib import Path | |
from scipy.io.wavfile import write | |
from scipy.io import wavfile | |
import soundfile as sf | |
from lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from vc_infer_pipeline import VC | |
from config import Config | |
config = Config() | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
spaces_hf = True #os.getenv("SYSTEM") == "spaces" | |
force_support = True | |
audio_mode = [] | |
f0method_mode = [] | |
f0method_info = "" | |
headers = { | |
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36" | |
} | |
pattern = r'//www\.bilibili\.com/video[^"]*' | |
# Download models | |
#urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/hubert_base", "hubert_base.pt") | |
urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/rmvpe", "rmvpe.pt") | |
# Get zip name | |
pattern_zip = r"/([^/]+)\.zip$" | |
from fairseq import checkpoint_utils | |
global hubert_model | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
def get_file_name(url): | |
match = re.search(pattern_zip, url) | |
if match: | |
extracted_string = match.group(1) | |
return extracted_string | |
else: | |
raise Exception("没有找到AI歌手模型的zip压缩包。") | |
# Get RVC models | |
def extract_zip(extraction_folder, zip_name): | |
os.makedirs(extraction_folder) | |
with zipfile.ZipFile(zip_name, 'r') as zip_ref: | |
zip_ref.extractall(extraction_folder) | |
os.remove(zip_name) | |
index_filepath, model_filepath = None, None | |
for root, dirs, files in os.walk(extraction_folder): | |
for name in files: | |
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100: | |
index_filepath = os.path.join(root, name) | |
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40: | |
model_filepath = os.path.join(root, name) | |
if not model_filepath: | |
raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.') | |
# move model and index file to extraction folder | |
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath))) | |
if index_filepath: | |
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath))) | |
# remove any unnecessary nested folders | |
for filepath in os.listdir(extraction_folder): | |
if os.path.isdir(os.path.join(extraction_folder, filepath)): | |
shutil.rmtree(os.path.join(extraction_folder, filepath)) | |
# Get username in OpenXLab | |
def get_username(url): | |
match_username = re.search(r'models/(.*?)/', url) | |
if match_username: | |
result = match_username.group(1) | |
return result | |
def download_online_model(url, dir_name): | |
if url.startswith('https://download.openxlab.org.cn/models/'): | |
zip_path = get_username(url) + "-" + get_file_name(url) | |
else: | |
zip_path = get_file_name(url) | |
if not os.path.exists(zip_path): | |
try: | |
zip_name = url.split('/')[-1] | |
extraction_folder = os.path.join(zip_path, dir_name) | |
if os.path.exists(extraction_folder): | |
raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.') | |
if 'pixeldrain.com' in url: | |
url = f'https://pixeldrain.com/api/file/{zip_name}' | |
urllib.request.urlretrieve(url, zip_name) | |
extract_zip(extraction_folder, zip_name) | |
#return f'[√] {dir_name} Model successfully downloaded!' | |
except Exception as e: | |
raise Exception(str(e)) | |
#Get bilibili BV id | |
def get_bilibili_video_id(url): | |
match = re.search(r'/video/([a-zA-Z0-9]+)/', url) | |
extracted_value = match.group(1) | |
return extracted_value | |
# Get bilibili audio | |
def find_first_appearance_with_neighborhood(text, pattern): | |
match = re.search(pattern, text) | |
if match: | |
return match.group() | |
else: | |
return None | |
def search_bilibili(keyword): | |
if keyword.startswith("BV"): | |
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1".format(keyword), headers=headers).text | |
else: | |
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text | |
video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern) | |
return video_link | |
# Save bilibili audio | |
def get_response(html_url): | |
headers = { | |
"referer": "https://www.bilibili.com/", | |
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36" | |
} | |
response = requests.get(html_url, headers=headers) | |
return response | |
def get_video_info(html_url): | |
response = get_response(html_url) | |
html_data = re.findall('<script>window.__playinfo__=(.*?)</script>', response.text)[0] | |
json_data = json.loads(html_data) | |
if json_data['data']['dash']['audio'][0]['backupUrl']!=None: | |
audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0] | |
else: | |
audio_url = json_data['data']['dash']['audio'][0]['baseUrl'] | |
return audio_url | |
def save_audio(title, audio_url): | |
audio_content = get_response(audio_url).content | |
with open(title + '.wav', mode='wb') as f: | |
f.write(audio_content) | |
print("音乐内容保存完成") | |
# Use UVR-HP5/2 | |
urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP2.pth", "uvr5/uvr_model/UVR-HP2.pth") | |
urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP5.pth", "uvr5/uvr_model/UVR-HP5.pth") | |
#urllib.request.urlretrieve("https://huggingface.co/fastrolling/uvr/resolve/main/Main_Models/5_HP-Karaoke-UVR.pth", "uvr5/uvr_model/UVR-HP5.pth") | |
from uvr5.vr import AudioPre | |
weight_uvr5_root = "uvr5/uvr_model" | |
uvr5_names = [] | |
for name in os.listdir(weight_uvr5_root): | |
if name.endswith(".pth") or "onnx" in name: | |
uvr5_names.append(name.replace(".pth", "")) | |
func = AudioPre | |
pre_fun_hp2 = func( | |
agg=int(10), | |
model_path=os.path.join(weight_uvr5_root, "UVR-HP2.pth"), | |
device="cuda", | |
is_half=True, | |
) | |
pre_fun_hp5 = func( | |
agg=int(10), | |
model_path=os.path.join(weight_uvr5_root, "UVR-HP5.pth"), | |
device="cuda", | |
is_half=True, | |
) | |
# Separate vocals | |
def youtube_downloader( | |
video_identifier, | |
filename, | |
split_model, | |
): | |
print(video_identifier) | |
video_info = get_video_info(video_identifier) | |
print(video_info) | |
audio_content = get_response(video_info).content | |
with open(filename.strip() + ".wav", mode="wb") as f: | |
f.write(audio_content) | |
audio_path = filename.strip() + ".wav" | |
# make dir output | |
os.makedirs("output", exist_ok=True) | |
if split_model=="UVR-HP2": | |
pre_fun = pre_fun_hp2 | |
else: | |
pre_fun = pre_fun_hp5 | |
pre_fun._path_audio_(audio_path, f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav") | |
os.remove(filename.strip()+".wav") | |
return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav" | |
# Original code | |
if force_support is False or spaces_hf is True: | |
if spaces_hf is True: | |
audio_mode = ["Upload audio", "TTS Audio"] | |
else: | |
audio_mode = ["Input path", "Upload audio", "TTS Audio"] | |
f0method_mode = ["pm", "harvest"] | |
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)" | |
else: | |
audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"] | |
f0method_mode = ["pm", "harvest", "crepe"] | |
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)" | |
if os.path.isfile("rmvpe.pt"): | |
f0method_mode.insert(2, "rmvpe") | |
def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index): | |
def vc_fn( | |
vc_audio_mode, | |
vc_input, | |
vc_upload, | |
tts_text, | |
tts_voice, | |
f0_up_key, | |
f0_method, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
): | |
try: | |
logs = [] | |
print(f"Converting using {model_name}...") | |
logs.append(f"Converting using {model_name}...") | |
yield "\n".join(logs), None | |
if vc_audio_mode == "Input path" or "Youtube" and vc_input != "": | |
audio, sr = librosa.load(vc_input, sr=16000, mono=True) | |
elif vc_audio_mode == "Upload audio": | |
if vc_upload is None: | |
return "You need to upload an audio", None | |
sampling_rate, audio = vc_upload | |
duration = audio.shape[0] / sampling_rate | |
if duration > 20 and spaces_hf: | |
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
times = [0, 0, 0] | |
f0_up_key = int(f0_up_key) | |
audio_opt = vc.pipeline( | |
hubert_model, | |
net_g, | |
0, | |
audio, | |
vc_input, | |
times, | |
f0_up_key, | |
f0_method, | |
file_index, | |
# file_big_npy, | |
index_rate, | |
if_f0, | |
filter_radius, | |
tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
version, | |
protect, | |
f0_file=None, | |
) | |
info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s" | |
print(f"{model_name} | {info}") | |
logs.append(f"Successfully Convert {model_name}\n{info}") | |
yield "\n".join(logs), (tgt_sr, audio_opt) | |
except Exception as err: | |
info = traceback.format_exc() | |
print(info) | |
print(f"Error when using {model_name}.\n{str(err)}") | |
yield info, None | |
return vc_fn | |
def combine_vocal_and_inst(model_name, song_name, song_id, split_model, cover_song, vocal_volume, inst_volume): | |
#samplerate, data = wavfile.read(cover_song) | |
vocal_path = cover_song #f"output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav" | |
output_path = song_name.strip() + "-AI-" + ''.join(os.listdir(f"{model_name}")).strip() + "翻唱版.mp3" | |
inst_path = f"output/{split_model}/{song_id}/instrument_{song_id}.wav_10.wav" | |
#with wave.open(vocal_path, "w") as wave_file: | |
#wave_file.setnchannels(1) | |
#wave_file.setsampwidth(2) | |
#wave_file.setframerate(samplerate) | |
#wave_file.writeframes(data.tobytes()) | |
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}' | |
result = subprocess.run(command.split(), stdout=subprocess.PIPE) | |
print(result.stdout.decode()) | |
return output_path | |
''' | |
def load_hubert(): | |
from fairseq import checkpoint_utils | |
global hubert_model | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
''' | |
''' | |
def load_hubert(): | |
global hubert_model | |
# Load the model state dictionary from the file | |
state_dict = torch.load("hubert_base.pt", map_location="cpu") | |
# Initialize the model | |
from fairseq.models.hubert import HubertModel | |
hubert_model = HubertModel.build_model(state_dict['args'], task=None) | |
# Load the state dictionary into the model | |
hubert_model.load_state_dict(state_dict['model']) | |
# Move the model to the desired device | |
hubert_model = hubert_model.to("cpu") | |
# Set the model to half precision if required | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
# Set the model to evaluation mode | |
hubert_model.eval() | |
load_hubert() | |
''' | |
def rvc_models(model_name): | |
global vc, net_g, index_files, tgt_sr, version | |
categories = [] | |
models = [] | |
for w_root, w_dirs, _ in os.walk(f"{model_name}"): | |
model_count = 1 | |
for sub_dir in w_dirs: | |
pth_files = glob.glob(f"{model_name}/{sub_dir}/*.pth") | |
index_files = glob.glob(f"{model_name}/{sub_dir}/*.index") | |
if pth_files == []: | |
print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...") | |
continue | |
cpt = torch.load(pth_files[0]) | |
tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
if_f0 = cpt.get("f0", 1) | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
model_version = "V1" | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
model_version = "V2" | |
del net_g.enc_q | |
print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
net_g.eval().to(config.device) | |
if config.is_half: | |
net_g = net_g.half() | |
else: | |
net_g = net_g.float() | |
vc = VC(tgt_sr, config) | |
if index_files == []: | |
print("Warning: No Index file detected!") | |
index_info = "None" | |
model_index = "" | |
else: | |
index_info = index_files[0] | |
model_index = index_files[0] | |
print(f"Model loaded [{model_count}/{len(w_dirs)}]: {index_files[0]} / {index_info} | ({model_version})") | |
model_count += 1 | |
models.append((index_files[0][:-4], index_files[0][:-4], "", "", model_version, create_vc_fn(index_files[0], tgt_sr, net_g, vc, if_f0, version, model_index))) | |
categories.append(["Models", "", models]) | |
return vc, net_g, index_files, tgt_sr, version | |
#load_hubert() | |
singers="您的专属AI歌手阵容:" | |
def infer_gpu(hubert_model, net_g, audio, f0_up_key, index_file, tgt_sr, version, f0_file=None): | |
return vc.pipeline( | |
hubert_model, | |
net_g, | |
0, | |
audio, | |
"", | |
[0, 0, 0], | |
f0_up_key, | |
"rmvpe", | |
index_file, | |
0.7, | |
1, | |
3, | |
tgt_sr, | |
0, | |
0.25, | |
version, | |
0.33, | |
f0_file=None, | |
) | |
def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_volume, inst_volume): | |
#load_hubert() | |
#print(hubert_model) | |
url = url.strip().replace(" ", "") | |
model_name = model_name.strip().replace(" ", "") | |
if url.startswith('https://download.openxlab.org.cn/models/'): | |
zip_path = get_username(url) + "-" + get_file_name(url) | |
else: | |
zip_path = get_file_name(url) | |
global singers | |
if model_name not in singers: | |
singers = singers+ ' '+ model_name | |
download_online_model(url, model_name) | |
rvc_models(zip_path) | |
song_name = song_name.strip().replace(" ", "") | |
video_identifier = search_bilibili(song_name) | |
song_id = get_bilibili_video_id(video_identifier) | |
if os.path.isdir(f"./output/{split_model}/{song_id}")==True: | |
audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=16000, mono=True) | |
song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None) | |
else: | |
audio, sr = librosa.load(youtube_downloader(video_identifier, song_id, split_model)[0], sr=16000, mono=True) | |
song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None) | |
sf.write(song_name.strip()+zip_path+"AI翻唱.wav", song_infer, tgt_sr) | |
output_full_song = combine_vocal_and_inst(zip_path, song_name.strip(), song_id, split_model, song_name.strip()+zip_path+"AI翻唱.wav", vocal_volume, inst_volume) | |
os.remove(song_name.strip()+zip_path+"AI翻唱.wav") | |
return output_full_song, singers | |
app = gr.Blocks(theme="JohnSmith9982/small_and_pretty") | |
with app: | |
with gr.Tab("中文版"): | |
gr.Markdown("# <center>🌊💕🎶 滔滔AI,您的专属AI全明星乐团</center>") | |
gr.Markdown("## <center>🌟 只需一个歌曲名,全网AI歌手任您选择!随时随地,听我想听!</center>") | |
gr.Markdown("### <center>🤗 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);相关问题欢迎在我们的[B站](https://space.bilibili.com/501495851)账号交流!滔滔AI,为爱滔滔!💕</center>") | |
with gr.Accordion("💡 一些AI歌手模型链接及使用说明(建议阅读)", open=False): | |
_ = f""" 任何能够在线下载的zip压缩包的链接都可以哦(zip压缩包只需包括AI歌手模型的.pth和.index文件,zip压缩包的链接需要以.zip作为后缀): | |
* Taylor Swift: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip | |
* Blackpink Lisa: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/Lisa.zip | |
* AI派蒙: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/paimon.zip | |
* AI孙燕姿: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/syz.zip | |
* AI[一清清清](https://www.bilibili.com/video/BV1wV411u74P)(推荐使用[OpenXLab](https://openxlab.org.cn/models)存放模型zip压缩包): https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/yiqing.zip\n | |
说明1:点击“一键开启AI翻唱之旅吧!”按钮即可使用!✨\n | |
说明2:一般情况下,男声演唱的歌曲转换成AI女声演唱需要升调,反之则需要降调;在“歌曲人声升降调”模块可以调整\n | |
说明3:对于同一个AI歌手模型或者同一首歌曲,第一次的运行时间会比较长(大约1分钟),请您耐心等待;之后的运行时间会大大缩短哦!\n | |
说明4:您之前下载过的模型会在“已下载的AI歌手全明星阵容”模块出现\n | |
说明5:此程序使用 [RVC](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) AI歌手模型,感谢[作者](https://space.bilibili.com/5760446)的开源!RVC模型训练教程参见[视频](https://www.bilibili.com/video/BV1mX4y1C7w4)\n | |
🤗 我们正在创建一个完全开源、共建共享的AI歌手模型社区,让更多的人感受到AI音乐的乐趣与魅力!请关注我们的[B站](https://space.bilibili.com/501495851)账号,了解社区的最新进展!合作联系:talktalkai.kevin@gmail.com | |
""" | |
gr.Markdown(dedent(_)) | |
with gr.Row(): | |
with gr.Column(): | |
inp1 = gr.Textbox(label="请输入AI歌手模型链接", info="模型需要是含有.pth和.index文件的zip压缩包", lines=2, value="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip", placeholder="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip") | |
with gr.Column(): | |
inp2 = gr.Textbox(label="请给您的AI歌手起一个昵称吧", info="可自定义名称,但名称中不能有特殊符号", lines=1, value="AI Taylor", placeholder="AI Taylor") | |
inp3 = gr.Textbox(label="请输入您需要AI翻唱的歌曲名", info="如果您对搜索结果不满意,可在歌曲名后加上“无损”或“歌手的名字”等关键词;歌曲名中不能有特殊符号", lines=1, value="小幸运", placeholder="小幸运") | |
with gr.Row(): | |
inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5", visible=False) | |
inp5 = gr.Slider(label="歌曲人声升降调", info="默认为0,+2为升高2个key,以此类推", minimum=-12, maximum=12, value=0, step=1) | |
inp6 = gr.Slider(label="歌曲人声音量调节", info="默认为1,等于0时为静音", minimum=0, maximum=3, value=1, step=0.2) | |
inp7 = gr.Slider(label="歌曲伴奏音量调节", info="默认为1,等于0时为静音", minimum=0, maximum=3, value=1, step=0.2) | |
btn = gr.Button("一键开启AI翻唱之旅吧!💕", variant="primary") | |
with gr.Row(): | |
output_song = gr.Audio(label="AI歌手为您倾情演绎") | |
singer_list = gr.Textbox(label="已下载的AI歌手全明星阵容") | |
btn.click(fn=rvc_infer_music, inputs=[inp1, inp2, inp3, inp4, inp5, inp6, inp7], outputs=[output_song, singer_list]) | |
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
with gr.Tab("EN"): | |
gr.Markdown("# <center>🌊💕🎶 TalkTalkAI - Best AI song cover generator ever</center>") | |
gr.Markdown("## <center>🌟 Provide the name of a song and our application running on A100 will handle everything else!</center>") | |
gr.Markdown("### <center>🤗 [TalkTalkAI](http://www.talktalkai.com/), let everyone enjoy a better life through human-centered AI💕</center>") | |
with gr.Accordion("💡 Some AI singers you can try", open=False): | |
_ = f""" Any Zip file that you can download online will be fine (The Zip file should contain .pth and .index files): | |
* AI Taylor Swift: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip | |
* AI Blackpink Lisa: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/Lisa.zip | |
* AI Paimon: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/paimon.zip | |
* AI Stefanie Sun: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/syz.zip | |
* AI[一清清清](https://www.bilibili.com/video/BV1wV411u74P): https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/yiqing.zip\n | |
""" | |
gr.Markdown(dedent(_)) | |
with gr.Row(): | |
with gr.Column(): | |
inp1_en = gr.Textbox(label="The Zip file of an AI singer", info="The Zip file should contain .pth and .index files", lines=2, value="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip", placeholder="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip") | |
with gr.Column(): | |
inp2_en = gr.Textbox(label="The name of your AI singer", lines=1, value="AI Taylor", placeholder="AI Taylor") | |
inp3_en = gr.Textbox(label="The name of a song", lines=1, value="Hotel California Eagles", placeholder="Hotel California Eagles") | |
with gr.Row(): | |
inp4_en = gr.Dropdown(label="UVR models", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5", visible=False) | |
inp5_en = gr.Slider(label="Transpose", info="0 from man to man (or woman to woman); 12 from man to woman and -12 from woman to man.", minimum=-12, maximum=12, value=0, step=1) | |
inp6_en = gr.Slider(label="Vocal volume", info="Adjust vocal volume (Default: 1)", minimum=0, maximum=3, value=1, step=0.2) | |
inp7_en = gr.Slider(label="Instrument volume", info="Adjust instrument volume (Default: 1)", minimum=0, maximum=3, value=1, step=0.2) | |
btn_en = gr.Button("Convert💕", variant="primary") | |
with gr.Row(): | |
output_song_en = gr.Audio(label="AI song cover") | |
singer_list_en = gr.Textbox(label="The AI singers you have") | |
btn_en.click(fn=rvc_infer_music, inputs=[inp1_en, inp2_en, inp3_en, inp4_en, inp5_en, inp6_en, inp7_en], outputs=[output_song_en, singer_list_en]) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🤗 - Stay tuned! The best is yet to come. | |
</p> | |
<p>📧 - Contact us: talktalkai.kevin@gmail.com | |
</p> | |
</div> | |
''') | |
app.queue(max_size=40, api_open=False) | |
app.launch(max_threads=400, show_error=True) |