Spaces:
Runtime error
Runtime error
kevinwang676
commited on
Commit
•
1e05f4b
1
Parent(s):
3759491
Update app.py
Browse files
app.py
CHANGED
@@ -66,79 +66,6 @@ pattern = r'//www\.bilibili\.com/video[^"]*'
|
|
66 |
|
67 |
pattern_zip = r"/([^/]+)\.zip$"
|
68 |
|
69 |
-
|
70 |
-
#os.system("pip install fairseq")
|
71 |
-
'''
|
72 |
-
from fairseq import checkpoint_utils
|
73 |
-
|
74 |
-
global hubert_model
|
75 |
-
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
76 |
-
["hubert_base.pt"],
|
77 |
-
suffix="",
|
78 |
-
)
|
79 |
-
hubert_model = models[0]
|
80 |
-
hubert_model = hubert_model.to(config.device)
|
81 |
-
if config.is_half:
|
82 |
-
hubert_model = hubert_model.half()
|
83 |
-
else:
|
84 |
-
hubert_model = hubert_model.float()
|
85 |
-
hubert_model.eval()
|
86 |
-
'''
|
87 |
-
|
88 |
-
#from infer_rvc_python.main import load_hu_bert
|
89 |
-
|
90 |
-
#load_hu_bert(config, "hubert_base.pt")
|
91 |
-
|
92 |
-
from infer_rvc_python import BaseLoader
|
93 |
-
|
94 |
-
#converter = BaseLoader(only_cpu=True, hubert_path="hubert_base.pt", rmvpe_path="rmvpe.pt")
|
95 |
-
#converter = BaseLoader(only_cpu=True, hubert_path=None, rmvpe_path=None)
|
96 |
-
'''
|
97 |
-
@spaces.GPU()
|
98 |
-
def convert_now(audio_files, random_tag, converter):
|
99 |
-
return converter(
|
100 |
-
audio_files,
|
101 |
-
random_tag,
|
102 |
-
overwrite=False,
|
103 |
-
parallel_workers=8
|
104 |
-
)
|
105 |
-
|
106 |
-
converter_test = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
107 |
-
|
108 |
-
converter_test.apply_conf(
|
109 |
-
tag="yoimiya",
|
110 |
-
file_model="model.pth",
|
111 |
-
pitch_algo="rmvpe+",
|
112 |
-
pitch_lvl=0,
|
113 |
-
file_index="model.index",
|
114 |
-
index_influence=0.66,
|
115 |
-
respiration_median_filtering=3,
|
116 |
-
envelope_ratio=0.25,
|
117 |
-
consonant_breath_protection=0.33
|
118 |
-
)
|
119 |
-
|
120 |
-
convert_now("10.wav", "test", converter_test)
|
121 |
-
'''
|
122 |
-
|
123 |
-
@spaces.GPU()
|
124 |
-
def load_hubert():
|
125 |
-
global hubert_model
|
126 |
-
from fairseq import checkpoint_utils
|
127 |
-
|
128 |
-
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
129 |
-
["hubert_base.pt"],
|
130 |
-
suffix="",
|
131 |
-
)
|
132 |
-
hubert_model = models[0]
|
133 |
-
hubert_model = hubert_model.to(config.device)
|
134 |
-
if config.is_half:
|
135 |
-
hubert_model = hubert_model.half()
|
136 |
-
else:
|
137 |
-
hubert_model = hubert_model.float()
|
138 |
-
hubert_model.eval()
|
139 |
-
|
140 |
-
load_hubert()
|
141 |
-
|
142 |
def get_file_name(url):
|
143 |
match = re.search(pattern_zip, url)
|
144 |
if match:
|
@@ -417,11 +344,11 @@ def combine_vocal_and_inst(model_name, song_name, song_id, split_model, cover_so
|
|
417 |
print(result.stdout.decode())
|
418 |
return output_path
|
419 |
|
420 |
-
|
421 |
def load_hubert():
|
|
|
422 |
from fairseq import checkpoint_utils
|
423 |
|
424 |
-
global hubert_model
|
425 |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
426 |
["hubert_base.pt"],
|
427 |
suffix="",
|
@@ -433,35 +360,8 @@ def load_hubert():
|
|
433 |
else:
|
434 |
hubert_model = hubert_model.float()
|
435 |
hubert_model.eval()
|
436 |
-
'''
|
437 |
-
'''
|
438 |
-
def load_hubert():
|
439 |
-
global hubert_model
|
440 |
-
|
441 |
-
# Load the model state dictionary from the file
|
442 |
-
state_dict = torch.load("hubert_base.pt", map_location="cpu")
|
443 |
-
|
444 |
-
# Initialize the model
|
445 |
-
from fairseq.models.hubert import HubertModel
|
446 |
-
hubert_model = HubertModel.build_model(state_dict['args'], task=None)
|
447 |
-
|
448 |
-
# Load the state dictionary into the model
|
449 |
-
hubert_model.load_state_dict(state_dict['model'])
|
450 |
-
|
451 |
-
# Move the model to the desired device
|
452 |
-
hubert_model = hubert_model.to("cpu")
|
453 |
-
|
454 |
-
# Set the model to half precision if required
|
455 |
-
if config.is_half:
|
456 |
-
hubert_model = hubert_model.half()
|
457 |
-
else:
|
458 |
-
hubert_model = hubert_model.float()
|
459 |
-
|
460 |
-
# Set the model to evaluation mode
|
461 |
-
hubert_model.eval()
|
462 |
|
463 |
-
load_hubert()
|
464 |
-
'''
|
465 |
|
466 |
def rvc_models(model_name):
|
467 |
global vc, net_g, index_files, tgt_sr, version
|
@@ -475,7 +375,7 @@ def rvc_models(model_name):
|
|
475 |
if pth_files == []:
|
476 |
print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...")
|
477 |
continue
|
478 |
-
cpt = torch.load(pth_files[0]
|
479 |
tgt_sr = cpt["config"][-1]
|
480 |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
481 |
if_f0 = cpt.get("f0", 1)
|
@@ -513,7 +413,6 @@ def rvc_models(model_name):
|
|
513 |
categories.append(["Models", "", models])
|
514 |
return vc, net_g, index_files, tgt_sr, version
|
515 |
|
516 |
-
#load_hubert()
|
517 |
|
518 |
singers="您的专属AI歌手阵容:"
|
519 |
|
@@ -541,8 +440,6 @@ def infer_gpu(hubert_model, net_g, audio, f0_up_key, index_file, tgt_sr, version
|
|
541 |
)
|
542 |
|
543 |
def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_volume, inst_volume):
|
544 |
-
#load_hubert()
|
545 |
-
#print(hubert_model)
|
546 |
url = url.strip().replace(" ", "")
|
547 |
model_name = model_name.strip().replace(" ", "")
|
548 |
if url.startswith('https://download.openxlab.org.cn/models/'):
|
@@ -552,13 +449,13 @@ def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_vo
|
|
552 |
global singers
|
553 |
if model_name not in singers:
|
554 |
singers = singers+ ' '+ model_name
|
555 |
-
print("
|
556 |
download_online_model(url, model_name)
|
557 |
rvc_models(zip_path)
|
558 |
song_name = song_name.strip().replace(" ", "")
|
559 |
video_identifier = search_bilibili(song_name)
|
560 |
song_id = get_bilibili_video_id(video_identifier)
|
561 |
-
|
562 |
if os.path.isdir(f"./output/{split_model}/{song_id}")==True:
|
563 |
audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=16000, mono=True)
|
564 |
song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None)
|
|
|
66 |
|
67 |
pattern_zip = r"/([^/]+)\.zip$"
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def get_file_name(url):
|
70 |
match = re.search(pattern_zip, url)
|
71 |
if match:
|
|
|
344 |
print(result.stdout.decode())
|
345 |
return output_path
|
346 |
|
347 |
+
@spaces.GPU()
|
348 |
def load_hubert():
|
349 |
+
global hubert_model
|
350 |
from fairseq import checkpoint_utils
|
351 |
|
|
|
352 |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
353 |
["hubert_base.pt"],
|
354 |
suffix="",
|
|
|
360 |
else:
|
361 |
hubert_model = hubert_model.float()
|
362 |
hubert_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
+
load_hubert()
|
|
|
365 |
|
366 |
def rvc_models(model_name):
|
367 |
global vc, net_g, index_files, tgt_sr, version
|
|
|
375 |
if pth_files == []:
|
376 |
print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...")
|
377 |
continue
|
378 |
+
cpt = torch.load(pth_files[0])
|
379 |
tgt_sr = cpt["config"][-1]
|
380 |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
381 |
if_f0 = cpt.get("f0", 1)
|
|
|
413 |
categories.append(["Models", "", models])
|
414 |
return vc, net_g, index_files, tgt_sr, version
|
415 |
|
|
|
416 |
|
417 |
singers="您的专属AI歌手阵容:"
|
418 |
|
|
|
440 |
)
|
441 |
|
442 |
def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_volume, inst_volume):
|
|
|
|
|
443 |
url = url.strip().replace(" ", "")
|
444 |
model_name = model_name.strip().replace(" ", "")
|
445 |
if url.startswith('https://download.openxlab.org.cn/models/'):
|
|
|
449 |
global singers
|
450 |
if model_name not in singers:
|
451 |
singers = singers+ ' '+ model_name
|
452 |
+
print("1.开始下载模型")
|
453 |
download_online_model(url, model_name)
|
454 |
rvc_models(zip_path)
|
455 |
song_name = song_name.strip().replace(" ", "")
|
456 |
video_identifier = search_bilibili(song_name)
|
457 |
song_id = get_bilibili_video_id(video_identifier)
|
458 |
+
print("2.开始去除BGM及推理")
|
459 |
if os.path.isdir(f"./output/{split_model}/{song_id}")==True:
|
460 |
audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=16000, mono=True)
|
461 |
song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None)
|