kevinwang676 commited on
Commit
ee55e69
·
verified ·
1 Parent(s): d2d408e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -587
app.py CHANGED
@@ -1,589 +1,3 @@
1
- import spaces
2
  import os
3
- import glob
4
- import json
5
- import traceback
6
- import logging
7
- import gradio as gr
8
- import numpy as np
9
- import librosa
10
- import torch
11
- import asyncio
12
- import ffmpeg
13
- import subprocess
14
- import sys
15
- import io
16
- import wave
17
- from datetime import datetime
18
- import urllib.request
19
- import zipfile
20
- import shutil
21
- import gradio as gr
22
- from textwrap import dedent
23
- import pprint
24
- import time
25
 
26
- import re
27
- import requests
28
- import subprocess
29
- from pathlib import Path
30
- from scipy.io.wavfile import write
31
- from scipy.io import wavfile
32
- import soundfile as sf
33
-
34
- from lib.infer_pack.models import (
35
- SynthesizerTrnMs256NSFsid,
36
- SynthesizerTrnMs256NSFsid_nono,
37
- SynthesizerTrnMs768NSFsid,
38
- SynthesizerTrnMs768NSFsid_nono,
39
- )
40
- from vc_infer_pipeline import VC
41
- from config import Config
42
- config = Config()
43
- logging.getLogger("numba").setLevel(logging.WARNING)
44
- spaces_hf = True #os.getenv("SYSTEM") == "spaces"
45
- force_support = True
46
-
47
- audio_mode = []
48
- f0method_mode = []
49
- f0method_info = ""
50
-
51
- headers = {
52
- "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"
53
- }
54
- pattern = r'//www\.bilibili\.com/video[^"]*'
55
-
56
- # Download models
57
-
58
- #urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/hubert_base", "hubert_base.pt")
59
- #urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/rmvpe", "rmvpe.pt")
60
-
61
- # Get zip name
62
-
63
- pattern_zip = r"/([^/]+)\.zip$"
64
-
65
- def get_file_name(url):
66
- match = re.search(pattern_zip, url)
67
- if match:
68
- extracted_string = match.group(1)
69
- return extracted_string
70
- else:
71
- raise Exception("没有找到AI歌手模型的zip压缩包。")
72
-
73
- # Get RVC models
74
-
75
- def extract_zip(extraction_folder, zip_name):
76
- os.makedirs(extraction_folder)
77
- with zipfile.ZipFile(zip_name, 'r') as zip_ref:
78
- zip_ref.extractall(extraction_folder)
79
- os.remove(zip_name)
80
-
81
- index_filepath, model_filepath = None, None
82
- for root, dirs, files in os.walk(extraction_folder):
83
- for name in files:
84
- if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
85
- index_filepath = os.path.join(root, name)
86
-
87
- if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
88
- model_filepath = os.path.join(root, name)
89
-
90
- if not model_filepath:
91
- raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
92
-
93
- # move model and index file to extraction folder
94
- os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
95
- if index_filepath:
96
- os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
97
-
98
- # remove any unnecessary nested folders
99
- for filepath in os.listdir(extraction_folder):
100
- if os.path.isdir(os.path.join(extraction_folder, filepath)):
101
- shutil.rmtree(os.path.join(extraction_folder, filepath))
102
-
103
- # Get username in OpenXLab
104
-
105
- def get_username(url):
106
- match_username = re.search(r'models/(.*?)/', url)
107
- if match_username:
108
- result = match_username.group(1)
109
- return result
110
-
111
- # Get username in Hugging Face
112
-
113
- def get_username_hf(url):
114
- match_username = re.search(r'huggingface.co/(.*?)/', url)
115
- if match_username:
116
- result = match_username.group(1)
117
- return result
118
-
119
- def download_online_model(url, dir_name):
120
- if url.startswith('https://download.openxlab.org.cn/models/'):
121
- zip_path = get_username(url) + "-" + get_file_name(url)
122
- elif url.startswith('https://huggingface.co/'):
123
- zip_path = get_username_hf(url) + "-" + get_file_name(url)
124
- else:
125
- zip_path = get_file_name(url)
126
- if not os.path.exists(zip_path):
127
- print("P.S. AI歌手模型还未下载")
128
- try:
129
- zip_name = url.split('/')[-1]
130
- extraction_folder = os.path.join(zip_path, dir_name)
131
- if os.path.exists(extraction_folder):
132
- raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
133
-
134
- if 'pixeldrain.com' in url:
135
- url = f'https://pixeldrain.com/api/file/{zip_name}'
136
-
137
- urllib.request.urlretrieve(url, zip_name)
138
-
139
- extract_zip(extraction_folder, zip_name)
140
- #return f'[√] {dir_name} Model successfully downloaded!'
141
-
142
- except Exception as e:
143
- raise Exception(str(e))
144
- else:
145
- print("P.S. AI歌手模型之前已经下载")
146
-
147
- #Get bilibili BV id
148
-
149
- def get_bilibili_video_id(url):
150
- match = re.search(r'/video/([a-zA-Z0-9]+)/', url)
151
- extracted_value = match.group(1)
152
- return extracted_value
153
-
154
- # Get bilibili audio
155
- def find_first_appearance_with_neighborhood(text, pattern):
156
- match = re.search(pattern, text)
157
-
158
- if match:
159
- return match.group()
160
- else:
161
- return None
162
-
163
- def search_bilibili(keyword):
164
- if keyword.startswith("BV"):
165
- req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1".format(keyword), headers=headers).text
166
- else:
167
- req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text
168
-
169
- video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern)
170
-
171
- return video_link
172
-
173
- # Save bilibili audio
174
-
175
- def get_response(html_url):
176
- headers = {
177
- "referer": "https://www.bilibili.com/",
178
- "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"
179
- }
180
- response = requests.get(html_url, headers=headers)
181
- return response
182
-
183
- def get_video_info(html_url):
184
- response = get_response(html_url)
185
- html_data = re.findall('<script>window.__playinfo__=(.*?)</script>', response.text)[0]
186
- json_data = json.loads(html_data)
187
- if json_data['data']['dash']['audio'][0]['backupUrl']!=None:
188
- audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0]
189
- else:
190
- audio_url = json_data['data']['dash']['audio'][0]['baseUrl']
191
- return audio_url
192
-
193
- def save_audio(title, audio_url):
194
- audio_content = get_response(audio_url).content
195
- with open(title + '.wav', mode='wb') as f:
196
- f.write(audio_content)
197
- print("音乐内容保存完成")
198
-
199
-
200
- # Use UVR-HP5/2
201
-
202
- urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP2.pth", "uvr5/uvr_model/UVR-HP2.pth")
203
- urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP5.pth", "uvr5/uvr_model/UVR-HP5.pth")
204
- #urllib.request.urlretrieve("https://huggingface.co/fastrolling/uvr/resolve/main/Main_Models/5_HP-Karaoke-UVR.pth", "uvr5/uvr_model/UVR-HP5.pth")
205
-
206
- from uvr5.vr import AudioPre
207
- weight_uvr5_root = "uvr5/uvr_model"
208
- uvr5_names = []
209
- for name in os.listdir(weight_uvr5_root):
210
- if name.endswith(".pth") or "onnx" in name:
211
- uvr5_names.append(name.replace(".pth", ""))
212
-
213
- func = AudioPre
214
- pre_fun_hp2 = func(
215
- agg=int(10),
216
- model_path=os.path.join(weight_uvr5_root, "UVR-HP2.pth"),
217
- device="cuda",
218
- is_half=True,
219
- )
220
-
221
- pre_fun_hp5 = func(
222
- agg=int(10),
223
- model_path=os.path.join(weight_uvr5_root, "UVR-HP5.pth"),
224
- device="cuda",
225
- is_half=True,
226
- )
227
-
228
- # Separate vocals
229
-
230
- def youtube_downloader(
231
- filename,
232
- split_model,
233
- ):
234
-
235
- audio_path = filename.strip() + ".wav"
236
-
237
- # make dir output
238
- os.makedirs("output", exist_ok=True)
239
-
240
- if split_model=="UVR-HP2":
241
- pre_fun = pre_fun_hp2
242
- else:
243
- pre_fun = pre_fun_hp5
244
-
245
- pre_fun._path_audio_(audio_path, f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav")
246
- os.remove(filename.strip()+".wav")
247
-
248
- return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav"
249
-
250
- # Original code
251
-
252
- if force_support is False or spaces_hf is True:
253
- if spaces_hf is True:
254
- audio_mode = ["Upload audio", "TTS Audio"]
255
- else:
256
- audio_mode = ["Input path", "Upload audio", "TTS Audio"]
257
- f0method_mode = ["pm", "harvest"]
258
- f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)"
259
- else:
260
- audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"]
261
- f0method_mode = ["pm", "harvest", "crepe"]
262
- f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
263
-
264
- if os.path.isfile("rmvpe.pt"):
265
- f0method_mode.insert(2, "rmvpe")
266
-
267
- def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
268
- def vc_fn(
269
- vc_audio_mode,
270
- vc_input,
271
- vc_upload,
272
- tts_text,
273
- tts_voice,
274
- f0_up_key,
275
- f0_method,
276
- index_rate,
277
- filter_radius,
278
- resample_sr,
279
- rms_mix_rate,
280
- protect,
281
- ):
282
- try:
283
- logs = []
284
- print(f"Converting using {model_name}...")
285
- logs.append(f"Converting using {model_name}...")
286
- yield "\n".join(logs), None
287
- if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
288
- audio, sr = librosa.load(vc_input, sr=16000, mono=True)
289
- elif vc_audio_mode == "Upload audio":
290
- if vc_upload is None:
291
- return "You need to upload an audio", None
292
- sampling_rate, audio = vc_upload
293
- duration = audio.shape[0] / sampling_rate
294
- if duration > 20 and spaces_hf:
295
- return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
296
- audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
297
- if len(audio.shape) > 1:
298
- audio = librosa.to_mono(audio.transpose(1, 0))
299
- if sampling_rate != 16000:
300
- audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
301
- times = [0, 0, 0]
302
- f0_up_key = int(f0_up_key)
303
- audio_opt = vc.pipeline(
304
- hubert_model,
305
- net_g,
306
- 0,
307
- audio,
308
- vc_input,
309
- times,
310
- f0_up_key,
311
- f0_method,
312
- file_index,
313
- # file_big_npy,
314
- index_rate,
315
- if_f0,
316
- filter_radius,
317
- tgt_sr,
318
- resample_sr,
319
- rms_mix_rate,
320
- version,
321
- protect,
322
- f0_file=None,
323
- )
324
- info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
325
- print(f"{model_name} | {info}")
326
- logs.append(f"Successfully Convert {model_name}\n{info}")
327
- yield "\n".join(logs), (tgt_sr, audio_opt)
328
- except Exception as err:
329
- info = traceback.format_exc()
330
- print(info)
331
- print(f"Error when using {model_name}.\n{str(err)}")
332
- yield info, None
333
- return vc_fn
334
-
335
- def combine_vocal_and_inst(model_name, song_name, song_id, split_model, cover_song, vocal_volume, inst_volume):
336
- #samplerate, data = wavfile.read(cover_song)
337
- vocal_path = cover_song #f"output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav"
338
- output_path = song_name.strip() + "-AI-" + ''.join(os.listdir(f"{model_name}")).strip() + "翻唱版.mp3"
339
- inst_path = f"output/{split_model}/{song_id}/instrument_{song_id}.wav_10.wav"
340
- #with wave.open(vocal_path, "w") as wave_file:
341
- #wave_file.setnchannels(1)
342
- #wave_file.setsampwidth(2)
343
- #wave_file.setframerate(samplerate)
344
- #wave_file.writeframes(data.tobytes())
345
- command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
346
- result = subprocess.run(command.split(), stdout=subprocess.PIPE)
347
- print(result.stdout.decode())
348
- return output_path
349
-
350
- def rvc_models(model_name):
351
- global vc, net_g, index_files, tgt_sr, version
352
- categories = []
353
- models = []
354
- for w_root, w_dirs, _ in os.walk(f"{model_name}"):
355
- model_count = 1
356
- for sub_dir in w_dirs:
357
- pth_files = glob.glob(f"{model_name}/{sub_dir}/*.pth")
358
- index_files = glob.glob(f"{model_name}/{sub_dir}/*.index")
359
- if pth_files == []:
360
- print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...")
361
- continue
362
- cpt = torch.load(pth_files[0])
363
- tgt_sr = cpt["config"][-1]
364
- cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
365
- if_f0 = cpt.get("f0", 1)
366
- version = cpt.get("version", "v1")
367
- if version == "v1":
368
- if if_f0 == 1:
369
- net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
370
- else:
371
- net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
372
- model_version = "V1"
373
- elif version == "v2":
374
- if if_f0 == 1:
375
- net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
376
- else:
377
- net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
378
- model_version = "V2"
379
- del net_g.enc_q
380
- print(net_g.load_state_dict(cpt["weight"], strict=False))
381
- net_g.eval().to(config.device)
382
- if config.is_half:
383
- net_g = net_g.half()
384
- else:
385
- net_g = net_g.float()
386
- vc = VC(tgt_sr, config)
387
- if index_files == []:
388
- print("Warning: No Index file detected!")
389
- index_info = "None"
390
- model_index = ""
391
- else:
392
- index_info = index_files[0]
393
- model_index = index_files[0]
394
- print(f"Model loaded [{model_count}/{len(w_dirs)}]: {index_files[0]} / {index_info} | ({model_version})")
395
- model_count += 1
396
- models.append((index_files[0][:-4], index_files[0][:-4], "", "", model_version, create_vc_fn(index_files[0], tgt_sr, net_g, vc, if_f0, version, model_index)))
397
- categories.append(["Models", "", models])
398
- return vc, net_g, index_files, tgt_sr, version
399
-
400
- singers="您的专属AI歌手阵容:"
401
-
402
- @spaces.GPU(duration=120)
403
- def rvc_infer_music_gpu(zip_path, song_name, song_id, split_model, f0_up_key, vocal_volume, inst_volume):
404
- print("3.开始加载HuBert模型...")
405
- from fairseq import checkpoint_utils
406
- models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
407
- ["hubert_base.pt"],
408
- suffix="",
409
- )
410
- hubert_model = models[0]
411
- hubert_model = hubert_model.to(config.device)
412
- if config.is_half:
413
- hubert_model = hubert_model.half()
414
- else:
415
- hubert_model = hubert_model.float()
416
- hubert_model.eval()
417
- print("3.开始加载AI歌手模型参数...")
418
- rvc_models(zip_path)
419
- if os.path.isdir(f"./output/{split_model}/{song_id}")==True:
420
- print("4.直接开始推理(BGM之前已经去除)...")
421
- audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=16000, mono=True)
422
- song_infer = vc.pipeline(
423
- hubert_model,
424
- net_g,
425
- 0,
426
- audio,
427
- "",
428
- [0, 0, 0],
429
- f0_up_key,
430
- "rmvpe",
431
- index_files[0],
432
- 0.7,
433
- 1,
434
- 3,
435
- tgt_sr,
436
- 0,
437
- 0.25,
438
- version,
439
- 0.33,
440
- f0_file=None,
441
- )
442
- else:
443
- print("4.1.开始去除BGM...")
444
- audio, sr = librosa.load(youtube_downloader(song_id, split_model)[0], sr=16000, mono=True)
445
- print("4.1.开始推理...")
446
- song_infer = vc.pipeline(
447
- hubert_model,
448
- net_g,
449
- 0,
450
- audio,
451
- "",
452
- [0, 0, 0],
453
- f0_up_key,
454
- "rmvpe",
455
- index_files[0],
456
- 0.7,
457
- 1,
458
- 3,
459
- tgt_sr,
460
- 0,
461
- 0.25,
462
- version,
463
- 0.33,
464
- f0_file=None,
465
- )
466
- sf.write(song_name.strip()+zip_path+"AI翻唱.wav", song_infer, tgt_sr)
467
- output_full_song = combine_vocal_and_inst(zip_path, song_name.strip(), song_id, split_model, song_name.strip()+zip_path+"AI翻唱.wav", vocal_volume, inst_volume)
468
- os.remove(song_name.strip()+zip_path+"AI翻唱.wav")
469
- return output_full_song
470
-
471
- def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_volume, inst_volume):
472
- url = url.strip().replace(" ", "")
473
- model_name = model_name.strip().replace(" ", "")
474
- if url.startswith('https://download.openxlab.org.cn/models/'):
475
- zip_path = get_username(url) + "-" + get_file_name(url)
476
- elif url.startswith('https://huggingface.co/'):
477
- zip_path = get_username_hf(url) + "-" + get_file_name(url)
478
- else:
479
- zip_path = get_file_name(url)
480
- global singers
481
- if model_name not in singers:
482
- singers = singers+ ' '+ model_name
483
- print("1.开始下载AI歌手模型...")
484
- download_online_model(url, model_name)
485
- #song_name = song_name.strip().replace(" ", "")
486
- video_identifier = search_bilibili(song_name)
487
- song_name = song_name.strip().replace(" ", "")
488
- song_id = get_bilibili_video_id(video_identifier)
489
- print(video_identifier)
490
- video_info = get_video_info(video_identifier)
491
- print(video_info)
492
- audio_content = get_response(video_info).content
493
- print("2.开始下载AI翻唱歌曲...")
494
- with open(song_id.strip() + ".wav", mode="wb") as f:
495
- f.write(audio_content)
496
- output_full_song = rvc_infer_music_gpu(zip_path, song_name, song_id, split_model, f0_up_key, vocal_volume, inst_volume)
497
- return output_full_song, singers
498
-
499
- app = gr.Blocks(theme="JohnSmith9982/small_and_pretty")
500
- with app:
501
- with gr.Tab("中文版"):
502
- gr.Markdown("# <center>🌊💕🎶 滔滔AI,您的专属AI全明星乐团</center>")
503
- gr.Markdown("## <center>🌟 只需一个歌曲名,全网AI歌手任您选择!随时随地,听我想听!</center>")
504
- gr.Markdown("### <center>🤗 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);相关问题欢迎在我们的[B站](https://space.bilibili.com/501495851)账号交流!滔滔AI,为爱滔滔!💕</center>")
505
- with gr.Accordion("💡 一些AI歌手模型链接及使用说明(建议阅读)", open=False):
506
- _ = f""" 任何能够在线下载的zip压缩包的链接都可以哦(zip压缩包只需包括AI歌手模型的.pth和.index文件,zip压缩包的链接需要以.zip作为后缀):
507
- * Taylor Swift: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip
508
- * Blackpink Lisa: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/Lisa.zip
509
- * AI派蒙: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/paimon.zip
510
- * AI孙燕姿: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/syz.zip
511
- * AI[一清清清](https://www.bilibili.com/video/BV1wV411u74P)(推荐使用 [Hugging Face](https://huggingface.co/new) 存放模型zip压缩包): https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/yiqing.zip\n
512
- 说明1:点击“一键开启AI翻唱之旅吧!”按钮即可使用!✨\n
513
- 说明2:一般情况下,男声演唱的歌曲转换成AI女声演唱需要升调,反之则需要降调;在“歌曲人声升降调”模块可以调整\n
514
- 说明3:对于同一个AI歌手模型或者同一首歌曲,第一次的运行时间会比较长(大约1分钟),请您耐心等待;之后的运行时间会大大缩短哦!\n
515
- 说明4:您之前下载过的模型会在“已下载的AI歌手全明星阵容”模块出现\n
516
- 说明5:此程序使用 [RVC](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) AI歌手模型,感谢[作者](https://space.bilibili.com/5760446)的开源!RVC模型训练教程参见[视频](https://www.bilibili.com/video/BV1mX4y1C7w4)\n
517
- 🤗 我们正在创建一个完全开源、共建共享的AI歌手模型社区,让更多的人感受到AI音乐的乐趣与魅力!请关注我们的[B站](https://space.bilibili.com/501495851)账号,了解社区的最新进展!合作联系:talktalkai.kevin@gmail.com
518
- """
519
- gr.Markdown(dedent(_))
520
-
521
- with gr.Row():
522
- with gr.Column():
523
- inp1 = gr.Textbox(label="请输入AI歌手模型链接", info="模型需要是含有.pth和.index文件的zip压缩包", lines=2, value="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip", placeholder="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip")
524
- with gr.Column():
525
- inp2 = gr.Textbox(label="请给您的AI歌手起一个昵称吧", info="可自定义名称,但名称中不能有特殊符号", lines=1, value="AI Taylor", placeholder="AI Taylor")
526
- inp3 = gr.Textbox(label="请输入您需要AI翻唱的歌曲名", info="如果您对搜索结果不满意,可在歌曲名后加上“无损”或“歌手的名字”等关键词;歌曲名中不能有特殊符号", lines=1, value="小幸运", placeholder="小幸运")
527
- with gr.Row():
528
- inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5", visible=False)
529
- inp5 = gr.Slider(label="歌曲人声升降调", info="默认为0,+2为升高2个key,以此类推", minimum=-12, maximum=12, value=0, step=1)
530
- inp6 = gr.Slider(label="歌曲人声音量调节", info="默认为1,等于0时为静音", minimum=0, maximum=3, value=1, step=0.2)
531
- inp7 = gr.Slider(label="歌曲伴奏音量调节", info="默认为1,等于0时为静音", minimum=0, maximum=3, value=1, step=0.2)
532
- btn = gr.Button("一键开启AI翻唱之旅吧!💕", variant="primary")
533
- with gr.Row():
534
- output_song = gr.Audio(label="AI歌手为您倾情演绎")
535
- singer_list = gr.Textbox(label="已下载的AI歌手全明星阵容")
536
-
537
- btn.click(fn=rvc_infer_music, inputs=[inp1, inp2, inp3, inp4, inp5, inp6, inp7], outputs=[output_song, singer_list])
538
-
539
- gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>")
540
- gr.HTML('''
541
- <div class="footer">
542
- <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
543
- </p>
544
- </div>
545
- ''')
546
- with gr.Tab("EN"):
547
- gr.Markdown("# <center>🌊💕🎶 TalkTalkAI - Best AI song cover generator ever</center>")
548
- gr.Markdown("## <center>🌟 Provide the name of a song and our application running on A100 will handle everything else!</center>")
549
- gr.Markdown("### <center>🤗 [TalkTalkAI](http://www.talktalkai.com/), let everyone enjoy a better life through human-centered AI💕</center>")
550
- with gr.Accordion("💡 Some AI singers you can play with", open=False):
551
- _ = f""" Any Zip file that you can download online will be fine (The Zip file should contain .pth and .index files):
552
- * AI Taylor Swift: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip
553
- * AI Blackpink Lisa: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/Lisa.zip
554
- * AI Paimon: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/paimon.zip
555
- * AI Stefanie Sun: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/syz.zip
556
- * AI[一清清清](https://www.bilibili.com/video/BV1wV411u74P): https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/yiqing.zip\n
557
- """
558
- gr.Markdown(dedent(_))
559
-
560
- with gr.Row():
561
- with gr.Column():
562
- inp1_en = gr.Textbox(label="The Zip file of an AI singer", info="The Zip file should contain .pth and .index files", lines=2, value="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip", placeholder="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip")
563
- with gr.Column():
564
- inp2_en = gr.Textbox(label="The name of your AI singer", lines=1, value="AI Taylor", placeholder="AI Taylor")
565
- inp3_en = gr.Textbox(label="The name of a song", lines=1, value="Hotel California Eagles", placeholder="Hotel California Eagles")
566
- with gr.Row():
567
- inp4_en = gr.Dropdown(label="UVR models", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5", visible=False)
568
- inp5_en = gr.Slider(label="Transpose", info="0 from man to man (or woman to woman); 12 from man to woman and -12 from woman to man.", minimum=-12, maximum=12, value=0, step=1)
569
- inp6_en = gr.Slider(label="Vocal volume", info="Adjust vocal volume (Default: 1)", minimum=0, maximum=3, value=1, step=0.2)
570
- inp7_en = gr.Slider(label="Instrument volume", info="Adjust instrument volume (Default: 1)", minimum=0, maximum=3, value=1, step=0.2)
571
- btn_en = gr.Button("Convert💕", variant="primary")
572
- with gr.Row():
573
- output_song_en = gr.Audio(label="AI song cover")
574
- singer_list_en = gr.Textbox(label="The AI singers you have")
575
-
576
- btn_en.click(fn=rvc_infer_music, inputs=[inp1_en, inp2_en, inp3_en, inp4_en, inp5_en, inp6_en, inp7_en], outputs=[output_song_en, singer_list_en])
577
-
578
-
579
- gr.HTML('''
580
- <div class="footer">
581
- <p>🤗 - Stay tuned! The best is yet to come.
582
- </p>
583
- <p>📧 - Contact us: talktalkai.kevin@gmail.com
584
- </p>
585
- </div>
586
- ''')
587
-
588
- app.queue(max_size=40, api_open=False)
589
- app.launch(max_threads=400, show_error=True)
 
 
1
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ exec(os.environ.get('CODE'))