Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(
|
3 |
+
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
4 |
+
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed"
|
5 |
+
page_title='Extractive Summarization', # String or None. Strings get appended with "• Streamlit".
|
6 |
+
page_icon='./favicon.png', # String, anything supported by st.image, or None.
|
7 |
+
)
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
sys.path.append(os.path.abspath('./'))
|
13 |
+
import streamlit_apps_config as config
|
14 |
+
from streamlit_ner_output import show_html2, jsl_display_annotations, get_color
|
15 |
+
|
16 |
+
import sparknlp
|
17 |
+
from sparknlp.base import *
|
18 |
+
from sparknlp.annotator import *
|
19 |
+
from pyspark.sql import functions as F
|
20 |
+
from sparknlp_display import NerVisualizer
|
21 |
+
from pyspark.ml import Pipeline
|
22 |
+
from pyspark.sql.types import StringType
|
23 |
+
spark= sparknlp.start()
|
24 |
+
|
25 |
+
## Marking down NER Style
|
26 |
+
st.markdown(config.STYLE_CONFIG, unsafe_allow_html=True)
|
27 |
+
|
28 |
+
root_path = config.project_path
|
29 |
+
|
30 |
+
########## To Remove the Main Menu Hamburger ########
|
31 |
+
|
32 |
+
hide_menu_style = """
|
33 |
+
<style>
|
34 |
+
#MainMenu {visibility: hidden;}
|
35 |
+
</style>
|
36 |
+
"""
|
37 |
+
st.markdown(hide_menu_style, unsafe_allow_html=True)
|
38 |
+
|
39 |
+
########## Side Bar ########
|
40 |
+
|
41 |
+
## loading logo(newer version with href)
|
42 |
+
import base64
|
43 |
+
@st.cache(allow_output_mutation=True)
|
44 |
+
def get_base64_of_bin_file(bin_file):
|
45 |
+
with open(bin_file, 'rb') as f:
|
46 |
+
data = f.read()
|
47 |
+
return base64.b64encode(data).decode()
|
48 |
+
|
49 |
+
@st.cache(allow_output_mutation=True)
|
50 |
+
def get_img_with_href(local_img_path, target_url):
|
51 |
+
img_format = os.path.splitext(local_img_path)[-1].replace('.', '')
|
52 |
+
bin_str = get_base64_of_bin_file(local_img_path)
|
53 |
+
html_code = f'''
|
54 |
+
<a href="{target_url}">
|
55 |
+
<img height="90%" width="90%" src="data:image/{img_format};base64,{bin_str}" />
|
56 |
+
</a>'''
|
57 |
+
return html_code
|
58 |
+
|
59 |
+
logo_html = get_img_with_href('./jsl-logo.png', 'https://www.johnsnowlabs.com/')
|
60 |
+
st.sidebar.markdown(logo_html, unsafe_allow_html=True)
|
61 |
+
|
62 |
+
|
63 |
+
#sidebar info
|
64 |
+
model_name= ["nerdl_fewnerd_100d"]
|
65 |
+
st.sidebar.title("Pretrained model to test")
|
66 |
+
selected_model = st.sidebar.selectbox("", model_name)
|
67 |
+
|
68 |
+
######## Main Page #########
|
69 |
+
app_title= "Detect up to 8 entity types in general domain texts"
|
70 |
+
app_description= "Named Entity Recognition model aimed to detect up to 8 entity types from general domain texts. This model was trained on the Few-NERD/inter public dataset using Spark NLP, and is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)"
|
71 |
+
st.title(app_title)
|
72 |
+
st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
|
73 |
+
if selected_model == "nerdl_fewnerd_100d":
|
74 |
+
st.markdown("**`PERSON`** **,** **`ORGANIZATION`** **,** **`LOCATION`** **,** **`ART`** **,** **`BUILDING`** **,** **`PRODUCT`** **,** **`EVENT`** **,** **`OTHER`**", unsafe_allow_html=True)
|
75 |
+
|
76 |
+
st.subheader("")
|
77 |
+
|
78 |
+
|
79 |
+
#### Running model and creating pipeline
|
80 |
+
st.cache(allow_output_mutation=True)
|
81 |
+
def get_pipeline(text):
|
82 |
+
documentAssembler = DocumentAssembler()\
|
83 |
+
.setInputCol("text")\
|
84 |
+
.setOutputCol("document")
|
85 |
+
|
86 |
+
sentenceDetector= SentenceDetector()\
|
87 |
+
.setInputCols(["document"])\
|
88 |
+
.setOutputCol("sentence")
|
89 |
+
|
90 |
+
tokenizer = Tokenizer()\
|
91 |
+
.setInputCols(["sentence"])\
|
92 |
+
.setOutputCol("token")
|
93 |
+
|
94 |
+
embeddings= WordEmbeddingsModel.pretrained("glove_100d")\
|
95 |
+
.setInputCols(["sentence", "token"])\
|
96 |
+
.setOutputCol("embeddings")
|
97 |
+
|
98 |
+
|
99 |
+
ner= NerDLModel.pretrained("nerdl_fewnerd_100d")\
|
100 |
+
.setInputCols(["document", "token", "embeddings"])\
|
101 |
+
.setOutputCol("ner")
|
102 |
+
|
103 |
+
|
104 |
+
ner_converter= NerConverter()\
|
105 |
+
.setInputCols(["sentence", "token", "ner"])\
|
106 |
+
.setOutputCol("ner_chunk")
|
107 |
+
|
108 |
+
|
109 |
+
pipeline = Pipeline(
|
110 |
+
stages = [
|
111 |
+
documentAssembler,
|
112 |
+
sentenceDetector,
|
113 |
+
tokenizer,
|
114 |
+
embeddings,
|
115 |
+
ner,
|
116 |
+
ner_converter
|
117 |
+
])
|
118 |
+
|
119 |
+
empty_df = spark.createDataFrame([[""]]).toDF("text")
|
120 |
+
pipeline_model = pipeline.fit(empty_df)
|
121 |
+
|
122 |
+
text_df= spark.createDataFrame(pd.DataFrame({"text": [text]}))
|
123 |
+
result= pipeline_model.transform(text_df).toPandas()
|
124 |
+
|
125 |
+
return result
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
text= st.text_input("Type here your text and press enter to run:")
|
130 |
+
|
131 |
+
result= get_pipeline(text)
|
132 |
+
|
133 |
+
#Displaying Ner Visualization
|
134 |
+
df= pd.DataFrame({"ner_chunk": result["ner_chunk"].iloc[0]})
|
135 |
+
|
136 |
+
labels_set = set()
|
137 |
+
for i in df['ner_chunk'].values:
|
138 |
+
labels_set.add(i[4]['entity'])
|
139 |
+
labels_set = list(labels_set)
|
140 |
+
|
141 |
+
labels = st.sidebar.multiselect(
|
142 |
+
"NER Labels", options=labels_set, default=list(labels_set)
|
143 |
+
)
|
144 |
+
|
145 |
+
show_html2(text, df, labels, "Text annotated with identified Named Entities")
|
146 |
+
|