File size: 8,646 Bytes
6520bbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import streamlit as st
import sparknlp
from johnsnowlabs import nlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
import pyspark.sql.functions as F
import pandas as pd
# Page Configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="expanded"
)
# CSS Styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section {
background-color: #f9f9f9;
padding: 10px;
border-radius: 10px;
margin-top: 10px;
}
.section p, .section ul {
color: #666666;
}
.table {
width: 100%;
border-collapse: collapse;
margin-top: 20px;
}
.table th, .table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.table th {
background-color: #4A90E2;
color: white;
}
.table td {
background-color: #f2f2f2;
}
</style>
""", unsafe_allow_html=True)
# Initialize Spark
@st.cache_resource
def init_spark():
return sparknlp.start()
# Create NLP Pipeline
@st.cache_resource
def create_pipeline():
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")
pos_tagger = PerceptronModel.pretrained("pos_anc", 'en') \
.setInputCols("document", "token") \
.setOutputCol("pos")
dep_parser = DependencyParserModel.pretrained('dependency_conllu') \
.setInputCols(["document", "pos", "token"]) \
.setOutputCol("dependency")
typed_dep_parser = TypedDependencyParserModel.pretrained('dependency_typed_conllu') \
.setInputCols(["token", "pos", "dependency"]) \
.setOutputCol("dependency_type")
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
pos_tagger,
dep_parser,
typed_dep_parser
])
return pipeline
# Fit Data to Pipeline
def fit_data(pipeline, text):
df = spark.createDataFrame([[text]]).toDF("text")
result = pipeline.fit(df).transform(df)
return result
# Render DataFrame as HTML Table
def render_table(df, sidebar=False):
html = df.to_html(classes="table", index=False, escape=False)
if sidebar:
st.sidebar.markdown(html, unsafe_allow_html=True)
else:
st.markdown(html, unsafe_allow_html=True)
def explain_tags(tag_type, tags, tag_dict):
explanations = [(tag, tag_dict[tag]) for tag in tags if tag in tag_dict]
if explanations:
df = pd.DataFrame(explanations, columns=[f"{tag_type} Tag", f"{tag_type} Meaning"])
df.index = [''] * len(df) # Hide the index
render_table(df, sidebar=True)
# Page Title and Subtitle
title = "Grammar Analysis & Dependency Parsing"
sub_title = "Visualize the syntactic structure of a sentence as a directed labeled graph."
st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True)
st.markdown(f'<div style="text-align: center; color: #666666;">{sub_title}</div>', unsafe_allow_html=True)
# Example Sentences
examples = [
"John Snow is a good man. He knows a lot about science.",
"In what country is the WTO headquartered?",
"I was wearing my dark blue shirt and tie.",
"The Geneva Motor Show is the most popular car show of the year.",
"Bill Gates and Steve Jobs had periods of civility."
]
# Text Selection
selected_text = st.selectbox("Select an example", examples)
custom_input = st.text_input("Try it with your own sentence!")
text_to_analyze = custom_input if custom_input else selected_text
st.write('Text to analyze:')
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto;
border: 1px solid #e6e9ef; border-radius: 0.25rem;
padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>"""
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)
# Initialize Spark and Pipeline
spark = init_spark()
pipeline = create_pipeline()
output = fit_data(pipeline, text_to_analyze)
# Display Dependency Tree
st.write("Dependency Tree:")
nlp.load('dep.typed').viz_streamlit_dep_tree(
text=text_to_analyze,
title='',
sub_title='',
set_wide_layout_CSS=False,
generate_code_sample=False,
key="NLU_streamlit",
show_infos=False,
show_logo=False,
show_text_input=False,
)
# Display Raw Result
st.write("Raw Result:")
df = output.select(F.explode(F.arrays_zip(
output.token.result,
output.token.begin,
output.token.end,
output.pos.result,
output.dependency.result,
output.dependency_type.result
)).alias("cols")) \
.select(F.expr("cols['0']").alias("chunk"),
F.expr("cols['1']").alias("begin"),
F.expr("cols['2']").alias("end"),
F.expr("cols['3']").alias("pos"),
F.expr("cols['4']").alias("dependency"),
F.expr("cols['5']").alias("dependency_type")).toPandas()
render_table(df)
# Sidebar Content
# POS and Dependency dictionaries
pos_dict = {
"CC": "Coordinating conjunction", "CD": "Cardinal number", "DT": "Determiner",
"EX": "Existential there", "FW": "Foreign word", "IN": "Preposition or subordinating conjunction",
"JJ": "Adjective", "JJR": "Adjective, comparative", "JJS": "Adjective, superlative",
"LS": "List item marker", "MD": "Modal", "NN": "Noun, singular or mass",
"NNS": "Noun, plural", "NNP": "Proper noun, singular", "NNPS": "Proper noun, plural",
"PDT": "Predeterminer", "POS": "Possessive ending", "PRP": "Personal pronoun",
"PRP$": "Possessive pronoun", "RB": "Adverb", "RBR": "Adverb, comparative",
"RBS": "Adverb, superlative", "RP": "Particle", "SYM": "Symbol", "TO": "to",
"UH": "Interjection", "VB": "Verb, base form", "VBD": "Verb, past tense",
"VBG": "Verb, gerund or present participle", "VBN": "Verb, past participle",
"VBP": "Verb, non-3rd person singular present", "VBZ": "Verb, 3rd person singular present",
"WDT": "Wh-determiner", "WP": "Wh-pronoun", "WP$": "Possessive wh-pronoun",
"WRB": "Wh-adverb"
}
dependency_dict = {
"acl": "clausal modifier of noun (adjectival clause)",
"advcl": "adverbial clause modifier",
"advmod": "adverbial modifier",
"amod": "adjectival modifier",
"appos": "appositional modifier",
"aux": "auxiliary",
"case": "case marking",
"cc": "coordinating conjunction",
"ccomp": "clausal complement",
"clf": "classifier",
"compound": "compound",
"conj": "conjunct",
"cop": "copula",
"csubj": "clausal subject",
"dep": "unspecified dependency",
"det": "determiner",
"discourse": "discourse element",
"dislocated": "dislocated elements",
"expl": "expletive",
"fixed": "fixed multiword expression",
"flat": "flat multiword expression",
"goeswith": "goes with",
"iobj": "indirect object",
"list": "list",
"mark": "marker",
"nmod": "nominal modifier",
"nsubj": "nominal subject",
"nummod": "numeric modifier",
"obj": "object",
"obl": "oblique nominal",
"orphan": "orphan",
"parataxis": "parataxis",
"punct": "punctuation",
"reparandum": "overridden disfluency",
"root": "root",
"vocative": "vocative",
"xcomp": "open clausal complement"
}
# Get unique POS and dependency tags
unique_pos = df['pos'].unique()
unique_dep = df['dependency_type'].unique()
# Sidebar options for explanations
if st.sidebar.checkbox("Explain POS Tags"):
explain_tags("POS", unique_pos, pos_dict)
if st.sidebar.checkbox("Explain Dependency Types"):
explain_tags("Dependency", unique_dep, dependency_dict)
# Sidebar with Reference Notebook Link
colab_link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/GRAMMAR_EN.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference Notebook:')
st.sidebar.markdown(colab_link, unsafe_allow_html=True) |