File size: 4,802 Bytes
14e4843 034968f 3655a9e 034968f 84f0fa3 034968f 84f0fa3 14e4843 d6d7ec6 14e4843 3237d78 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 034968f 3655a9e 034968f 84f0fa3 3655a9e 84f0fa3 3655a9e 84f0fa3 034968f 84f0fa3 034968f 84f0fa3 034968f 84f0fa3 034968f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import pandas as pd
from huggingface_hub import snapshot_download
import subprocess
import re
import os
try:
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
except:
print("local debug: from display.utils")
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
for i in range(10):
try:
snapshot_download(
repo_id=repo_id, revision=revision, local_dir=local_dir, repo_type=repo_type, max_workers=max_workers
)
return
except Exception as e:
print(f"Failed to download {repo_id} at {revision} with error: {e}. Retrying...")
import time
time.sleep(60)
return
def get_dataset_url(row):
dataset_name = row["Benchmark"]
dataset_url = row["Dataset Link"]
benchmark = f'<a target="_blank" href="{dataset_url}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{dataset_name}</a>'
return benchmark
def get_dataset_summary_table(file_path):
df = pd.read_csv(file_path)
df["Benchmark"] = df.apply(lambda x: get_dataset_url(x), axis=1)
df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]]
return df
def parse_nvidia_smi():
visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', None)
if visible_devices is not None:
gpu_indices = visible_devices.split(',')
else:
# Query all GPU indices if CUDA_VISIBLE_DEVICES is not set
result = subprocess.run(['nvidia-smi', '--query-gpu=index', '--format=csv,noheader'], capture_output=True, text=True)
if result.returncode != 0:
print("Failed to query GPU indices.")
return []
gpu_indices = result.stdout.strip().split('\n')
print(f"gpu_indices: {gpu_indices}")
gpu_stats = []
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+?\d+GB)')
gpu_name = ""
for index in gpu_indices:
result = subprocess.run(['nvidia-smi', '-i', index], capture_output=True, text=True)
output = result.stdout.strip()
lines = output.split("\n")
for line in lines:
match = gpu_info_pattern.search(line)
name_match = gpu_name_pattern.search(line)
gpu_info = {}
if name_match:
gpu_name = name_match.group(1).strip()
if match:
temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
gpu_info.update({
GPU_TEMP: temp,
GPU_Power: power_usage,
GPU_Mem: mem_usage,
GPU_Util: gpu_util
})
if len(gpu_info) >= 4:
gpu_stats.append(gpu_info)
print(f"len(gpu_stats): {len(gpu_stats)}")
gpu_name = f"{len(gpu_stats)}x{gpu_name}"
gpu_stats_total = {
GPU_TEMP: 0,
GPU_Power: 0,
GPU_Mem: 0,
GPU_Util: 0,
GPU_Name: gpu_name
}
for gpu_stat in gpu_stats:
gpu_stats_total[GPU_TEMP] += gpu_stat[GPU_TEMP]
gpu_stats_total[GPU_Power] += gpu_stat[GPU_Power]
gpu_stats_total[GPU_Mem] += gpu_stat[GPU_Mem]
gpu_stats_total[GPU_Util] += gpu_stat[GPU_Util]
gpu_stats_total[GPU_TEMP] /= len(gpu_stats)
gpu_stats_total[GPU_Power] /= len(gpu_stats)
gpu_stats_total[GPU_Util] /= len(gpu_stats)
return [gpu_stats_total]
def monitor_gpus(stop_event, interval, stats_list):
while not stop_event.is_set():
gpu_stats = parse_nvidia_smi()
if gpu_stats:
stats_list.extend(gpu_stats)
stop_event.wait(interval)
def analyze_gpu_stats(stats_list):
# Check if the stats_list is empty, and return None if it is
if not stats_list:
return None
# Initialize dictionaries to store the stats
avg_stats = {}
max_stats = {}
# Calculate average stats, excluding 'GPU_Mem'
for key in stats_list[0].keys():
if key != GPU_Mem and key != GPU_Name:
total = sum(d[key] for d in stats_list)
avg_stats[key] = total / len(stats_list)
# Calculate max stats for 'GPU_Mem'
max_stats[GPU_Mem] = max(d[GPU_Mem] for d in stats_list)
if GPU_Name in stats_list[0]:
avg_stats[GPU_Name] = stats_list[0][GPU_Name]
# Update average stats with max GPU memory usage
avg_stats.update(max_stats)
return avg_stats
if __name__ == "__main__":
print(analyze_gpu_stats(parse_nvidia_smi()))
|