File size: 10,557 Bytes
14e4843
 
 
 
 
 
 
d6d7ec6
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d7ec6
 
 
14e4843
 
 
d6d7ec6
14e4843
1c22d8d
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581fdbd
 
 
14e4843
 
 
 
 
 
 
 
 
 
d6d7ec6
 
 
14e4843
 
 
 
 
 
 
 
 
 
 
d6d7ec6
14e4843
 
 
 
 
d6d7ec6
14e4843
d6d7ec6
14e4843
 
d6d7ec6
 
14e4843
 
 
 
d6d7ec6
14e4843
d6d7ec6
14e4843
 
 
 
 
 
d6d7ec6
 
 
 
 
 
 
 
 
 
1c22d8d
d6d7ec6
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c22d8d
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c22d8d
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d7ec6
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d7ec6
14e4843
 
 
d6d7ec6
14e4843
 
d6d7ec6
 
 
14e4843
 
 
 
 
 
 
 
 
 
 
 
d6d7ec6
 
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import glob
import json
import os
from tqdm import tqdm
from dataclasses import dataclass

import dateutil

# import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub

from typing import Optional


def is_float(string):
    try:
        float(string)
        return True
    except ValueError:
        return False


@dataclass
class EvalResult:
    # Also see src.display.utils.AutoEvalColumn for what will be displayed.
    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"  # From config file
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False
    inference_framework: str = "Unknown"

    @staticmethod
    def init_from_json_file(json_filepath, is_backend: bool = False):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        # We manage the legacy config format
        config = data.get("config", data.get("config_general", None))

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        # Get inference framework
        inference_framework = config.get("inference_framework", "Unknown")

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, error, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)

        # data['results'] is {'nq_open': {'em': 0.24293628808864265, 'em_stderr': 0.007138697341112125}}

        results = {}
        for benchmark, benchmark_results in data["results"].items():
            if benchmark not in results:
                results[benchmark] = {}

            for metric, value in benchmark_results.items():
                to_add = True
                if "_stderr" in metric:
                    to_add = False
                if "alias" in metric:
                    to_add = False

                if "," in metric:
                    metric = metric.split(",")[0]
                metric = metric.replace("exact_match", "em")

                if to_add is True:
                    multiplier = 100.0
                    if "rouge" in metric and "truthful" not in benchmark:
                        multiplier = 1.0
                    if "squad" in benchmark:
                        multiplier = 1.0

                    # print('RESULTS', data['results'])
                    # print('XXX', benchmark, metric, value, multiplier)
                    results[benchmark][metric] = value * multiplier

        res = EvalResult(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture,
            inference_framework=inference_framework,
        )

        return res

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)

            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            self.inference_framework = request.get("inference_framework", "Unknown")
        except Exception as e:
            print(f"Could not find request file for {self.org}/{self.model} -- path: {requests_path} -- {e}")

    def is_complete(self) -> bool:
        for task in Tasks:
            if task.value.benchmark not in self.results:
                return False
        return True

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""

        # breakpoint()
        # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)

        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            # AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.inference_framework.name: self.inference_framework,
        }

        for task in Tasks:
            if task.value.benchmark in self.results:
                data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED and RUNNING"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)

    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if req_content["precision"] == precision.split(".")[-1]:
                request_file = tmp_request_file
    return request_file


def get_request_file_for_model_open_llm(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
                request_file = tmp_request_file
    return request_file


def update_model_type_with_open_llm_request_file(result, open_llm_requests_path):
    """Finds the relevant request file for the current model and updates info with it"""
    request_file = get_request_file_for_model_open_llm(
        open_llm_requests_path, result.full_model, result.precision.value.name
    )

    if request_file:
        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            open_llm_model_type = request.get("model_type", "Unknown")
            if open_llm_model_type != "Unknown":
                result.model_type = ModelType.from_str(open_llm_model_type)
        except Exception as e:
            pass
    return result


def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool = False) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in tqdm(model_result_filepaths, desc="reading model_result_filepaths"):
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath, is_backend=is_backend)
        eval_result.update_with_request_file(requests_path)
        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        results.append(v)

    return results