File size: 2,275 Bytes
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89d71b
 
14e4843
a89d71b
 
14e4843
 
a89d71b
 
 
14e4843
a89d71b
 
 
14e4843
 
 
 
2d754ab
a89d71b
14e4843
a89d71b
 
14e4843
a89d71b
14e4843
2d754ab
14e4843
 
 
 
a89d71b
14e4843
a89d71b
14e4843
 
a89d71b
14e4843
a89d71b
2d754ab
14e4843
 
 
 
 
 
d6d7ec6
14e4843
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os

import torch

from dataclasses import dataclass
from enum import Enum

from src.envs import CACHE_PATH


@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str
    num_fewshot: int


class Tasks(Enum):
    # task0 = Task("nq_open", "em", "NQ Open", 64)  # 64, as in the ATLAS paper
    # task1 = Task("triviaqa", "em", "TriviaQA", 64)  # 64, as in the ATLAS paper

    # task11 = Task("nq8", "em", "NQ Open 8", 8)
    # task12 = Task("tqa8", "em", "TriviaQA 8", 8)

    # TruthfulQA is intended as a zero-shot benchmark [5, 47]. https://owainevans.github.io/pdfs/truthfulQA_lin_evans.pdf
    # task2 = Task("truthfulqa_gen", "rougeL_acc", "TruthfulQA Gen", 0)
    # task3 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1", 0)
    # task4 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2", 0)

    # task5 = Task("halueval_qa", "acc", "HaluEval QA", 0)
    # task6 = Task("halueval_dialogue", "acc", "HaluEval Dialogue", 0)
    # task7 = Task("halueval_summarization", "acc", "HaluEval Summarization", 0)

    # task8 = Task("xsum", "rougeL", "XSum", 2)
    # task9 = Task("cnndm", "rougeL", "CNN/DM", 2)

    # task8_1 = Task("xsum_v2", "rougeL", "XSum", 0)
    # task9_1 = Task("cnndm_v2", "rougeL", "CNN/DM", 0)

    # task10 = Task("memo-trap", "acc", "memo-trap", 0)
    # task10_2 = Task("memo-trap_v2", "acc", "memo-trap", 0)

    # task13 = Task("ifeval", "prompt_level_strict_acc", "IFEval", 0)

    task14 = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT", 0)

    # task15 = Task("fever10", "acc", "FEVER", 16)
    # task15_1 = Task("fever11", "acc", "FEVER", 8)

    # task16 = Task("squadv2", "exact", "SQuADv2", 4)

    # task17 = Task("truefalse_cieacf", "acc", "TrueFalse", 8)

    # task18 = Task("faithdial_hallu", "acc", "FaithDial", 8)
    # task19 = Task("faithdial_hallu_v2", "acc", "FaithDial", 8)

    # task20 = Task("race", "acc", "RACE", 0)
    task21 = Task("mmlu", "acc", "MMLU", 5)


EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_REQUESTS_PATH_BACKEND_SYNC = os.path.join(CACHE_PATH, "eval-queue-bk-sync")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

LIMIT = None  # Testing; needs to be None