File size: 9,803 Bytes
14e4843
 
 
 
 
 
 
 
 
4736a54
 
 
 
 
14e4843
034968f
 
17162c6
84f0fa3
034968f
84f0fa3
17162c6
84f0fa3
 
 
 
 
 
 
 
 
 
 
 
17162c6
84f0fa3
 
034968f
14e4843
 
 
 
 
 
 
 
 
 
 
 
a89d71b
 
 
14e4843
2d754ab
a89d71b
 
14e4843
a89d71b
 
 
14e4843
a89d71b
 
14e4843
a89d71b
 
14e4843
a89d71b
14e4843
a89d71b
 
 
14e4843
a89d71b
aa83719
4736a54
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d7ec6
14e4843
 
82a6ed1
 
14e4843
998f2a6
 
14e4843
1c22d8d
4736a54
1c22d8d
14e4843
 
88d1c0e
034968f
84f0fa3
17162c6
2acbfac
84f0fa3
2acbfac
4736a54
 
2acbfac
034968f
 
14e4843
82a6ed1
 
 
 
4736a54
82a6ed1
 
 
 
 
 
 
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c22d8d
 
5fd4d0a
 
1c22d8d
 
 
 
4736a54
1c22d8d
 
 
 
 
 
 
4736a54
1c22d8d
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5373bd7
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]

E2Es = "E2E(s)" #"End-to-end time (s)"
PREs = "PRE(s)" #"Prefilling time (s)"
TS = "T/s" #Decoding throughput (tok/s)
InFrame = "Method" #"Inference framework"
MULTIPLE_CHOICEs = ["mmlu"]

GPU_TEMP = 'Temp(C)'
GPU_Power = 'Power(W)'
GPU_Mem = 'Mem(G)'
GPU_Name = "GPU"
GPU_Util = 'Util(%)'
BATCH_SIZE = 'bs'
PRECISION = "Precision"
system_metrics_to_name_map = {
    "end_to_end_time": f"{E2Es}",
    "prefilling_time": f"{PREs}",
    "decoding_throughput": f"{TS}",
}

gpu_metrics_to_name_map = {
    GPU_Util: GPU_Util,
    GPU_TEMP: GPU_TEMP,
    GPU_Power: GPU_Power,
    GPU_Mem: GPU_Mem,
    "batch_size": BATCH_SIZE,
    "precision": PRECISION,
    GPU_Name: GPU_Name,
}

@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


class Tasks(Enum):
    # XXX include me back at some point
    # nqopen = Task("nq8", "em", "NQ Open/EM")
    # triviaqa = Task("tqa8", "em", "TriviaQA/EM")

    # truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthQA MC1/Acc")
    # truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthQA MC2/Acc")
    # truthfulqa_gen = Task("truthfulqa_gen", "rougeL_acc", "TruthQA Gen/ROUGE")

    # xsum_r = Task("xsum_v2", "rougeL", "XSum/ROUGE")
    # xsum_f = Task("xsum_v2", "factKB", "XSum/factKB")
    # xsum_b = Task("xsum_v2", "bertscore_precision", "XSum/BERT-P")

    # cnndm_r = Task("cnndm_v2", "rougeL", "CNN-DM/ROUGE")
    # cnndm_f = Task("cnndm_v2", "factKB", "CNN-DM/factKB")
    # cnndm_b = Task("cnndm_v2", "bertscore_precision", "CNN-DM/BERT-P")

    # race = Task("race", "acc", "RACE/Acc")
    # squadv2 = Task("squadv2", "exact", "SQUaDv2/EM")

    # memotrap = Task("memo-trap_v2", "acc", "MemoTrap/Acc")
    # ifeval = Task("ifeval", "prompt_level_strict_acc", "IFEval/Acc")

    # faithdial = Task("faithdial_hallu_v2", "acc", "FaithDial/Acc")

    # halueval_qa = Task("halueval_qa", "acc", "HaluQA/Acc")
    # halueval_summ = Task("halueval_summarization", "acc", "HaluSumm/Acc")
    # halueval_dial = Task("halueval_dialogue", "acc", "HaluDial/Acc")

    # # XXX include me back at some point
    selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
    mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False


auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])

# #Scores
# # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])

# Inference framework
auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnContent(f"{InFrame}", "str", True)])

for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
    # System performance metrics
    auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True)])
    auto_eval_column_dict.append([f"{task.name}_batch_size", ColumnContent, ColumnContent(f"{task.value.col_name} {BATCH_SIZE}", "number", True)])
    # auto_eval_column_dict.append([f"{task.name}_precision", ColumnContent, ColumnContent(f"{task.value.col_name} {PRECISION}", "str", True)])
    auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True)])
    auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True)])
    auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True)])
    if task.value.benchmark in MULTIPLE_CHOICEs:
        continue
    # auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False)])
    auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True)])


# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


@dataclass
class ModelDetails:
    name: str
    symbol: str = ""  # emoji, only for the model type


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟒")
    FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πŸ”Ά")
    chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="πŸ’¬")
    merges = ModelDetails(name="base merges and moerges", symbol="🀝")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "β­•", "πŸ’¬"]]):
            return ModelType.chat
        if "merge" in type or "🀝" in type:
            return ModelType.merges
        return ModelType.Unknown


class InferenceFramework(Enum):
    # "moe-infinity", hf-chat
    MoE_Infinity = ModelDetails("moe-infinity")
    HF_Chat = ModelDetails("hf-chat")
    Unknown = ModelDetails("?")

    def to_str(self):
        return self.value.name

    @staticmethod
    def from_str(inference_framework: str):
        if inference_framework in ["moe-infinity"]:
            return InferenceFramework.MoE_Infinity
        if inference_framework in ["hf-chat"]:
            return InferenceFramework.HF_Chat
        return InferenceFramework.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float32 = ModelDetails("float32")
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    qt_8bit = ModelDetails("8bit")
    qt_4bit = ModelDetails("4bit")
    qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    @staticmethod
    def from_str(precision: str):
        if precision in ["torch.float32", "float32"]:
            return Precision.float32
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["8bit"]:
            return Precision.qt_8bit
        if precision in ["4bit"]:
            return Precision.qt_4bit
        if precision in ["GPTQ", "None"]:
            return Precision.qt_GPTQ
        return Precision.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

# NUMERIC_INTERVALS = {
#     "?": pd.Interval(-1, 0, closed="right"),
#     "~1.5": pd.Interval(0, 2, closed="right"),
#     "~3": pd.Interval(2, 4, closed="right"),
#     "~7": pd.Interval(4, 9, closed="right"),
#     "~13": pd.Interval(9, 20, closed="right"),
#     "~35": pd.Interval(20, 45, closed="right"),
#     "~60": pd.Interval(45, 70, closed="right"),
#     "70+": pd.Interval(70, 10000, closed="right"),
# }