|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
E2Es = "E2E(s)" |
|
PREs = "PRE(s)" |
|
TS = "T/s" |
|
InFrame = "Method" |
|
MULTIPLE_CHOICEs = ["mmlu"] |
|
|
|
GPU_TEMP = 'Temp(C)' |
|
GPU_Power = 'Power(W)' |
|
GPU_Mem = 'Mem(G)' |
|
GPU_Name = "GPU" |
|
GPU_Util = 'Util(%)' |
|
BATCH_SIZE = 'bs' |
|
PRECISION = "Precision" |
|
system_metrics_to_name_map = { |
|
"end_to_end_time": f"{E2Es}", |
|
"prefilling_time": f"{PREs}", |
|
"decoding_throughput": f"{TS}", |
|
} |
|
|
|
gpu_metrics_to_name_map = { |
|
GPU_Util: GPU_Util, |
|
GPU_TEMP: GPU_TEMP, |
|
GPU_Power: GPU_Power, |
|
GPU_Mem: GPU_Mem, |
|
"batch_size": BATCH_SIZE, |
|
"precision": PRECISION, |
|
GPU_Name: GPU_Name, |
|
} |
|
|
|
@dataclass |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
|
|
|
|
class Tasks(Enum): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT") |
|
mmlu = Task("mmlu", "acc", "MMLU") |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
|
|
|
|
|
|
|
|
|
|
auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnContent(f"{InFrame}", "str", True)]) |
|
|
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) |
|
|
|
auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True)]) |
|
auto_eval_column_dict.append([f"{task.name}_batch_size", ColumnContent, ColumnContent(f"{task.value.col_name} {BATCH_SIZE}", "number", True)]) |
|
|
|
auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True)]) |
|
auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True)]) |
|
auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True)]) |
|
if task.value.benchmark in MULTIPLE_CHOICEs: |
|
continue |
|
|
|
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True)]) |
|
|
|
|
|
|
|
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) |
|
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) |
|
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)]) |
|
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) |
|
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) |
|
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)]) |
|
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) |
|
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) |
|
|
|
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) |
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
private = ColumnContent("private", "bool", True) |
|
precision = ColumnContent("precision", "str", True) |
|
weight_type = ColumnContent("weight_type", "str", "Original") |
|
model_framework = ColumnContent("inference_framework", "str", True) |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
symbol: str = "" |
|
|
|
|
|
class ModelType(Enum): |
|
PT = ModelDetails(name="pretrained", symbol="π’") |
|
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ") |
|
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬") |
|
merges = ModelDetails(name="base merges and moerges", symbol="π€") |
|
Unknown = ModelDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "πΆ" in type: |
|
return ModelType.FT |
|
if "pretrained" in type or "π’" in type: |
|
return ModelType.PT |
|
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): |
|
return ModelType.chat |
|
if "merge" in type or "π€" in type: |
|
return ModelType.merges |
|
return ModelType.Unknown |
|
|
|
|
|
class InferenceFramework(Enum): |
|
|
|
MoE_Infinity = ModelDetails("moe-infinity") |
|
HF_Chat = ModelDetails("hf-chat") |
|
Unknown = ModelDetails("?") |
|
|
|
def to_str(self): |
|
return self.value.name |
|
|
|
@staticmethod |
|
def from_str(inference_framework: str): |
|
if inference_framework in ["moe-infinity"]: |
|
return InferenceFramework.MoE_Infinity |
|
if inference_framework in ["hf-chat"]: |
|
return InferenceFramework.HF_Chat |
|
return InferenceFramework.Unknown |
|
|
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
|
|
class Precision(Enum): |
|
float32 = ModelDetails("float32") |
|
float16 = ModelDetails("float16") |
|
bfloat16 = ModelDetails("bfloat16") |
|
qt_8bit = ModelDetails("8bit") |
|
qt_4bit = ModelDetails("4bit") |
|
qt_GPTQ = ModelDetails("GPTQ") |
|
Unknown = ModelDetails("?") |
|
|
|
@staticmethod |
|
def from_str(precision: str): |
|
if precision in ["torch.float32", "float32"]: |
|
return Precision.float32 |
|
if precision in ["torch.float16", "float16"]: |
|
return Precision.float16 |
|
if precision in ["torch.bfloat16", "bfloat16"]: |
|
return Precision.bfloat16 |
|
if precision in ["8bit"]: |
|
return Precision.qt_8bit |
|
if precision in ["4bit"]: |
|
return Precision.qt_4bit |
|
if precision in ["GPTQ", "None"]: |
|
return Precision.qt_GPTQ |
|
return Precision.Unknown |
|
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|