|
|
|
|
|
import json |
|
import os |
|
import time |
|
|
|
from datetime import datetime, timezone |
|
|
|
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO |
|
from src.submission.check_validity import already_submitted_models, get_model_size, is_model_on_hub |
|
|
|
from huggingface_hub import snapshot_download |
|
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND |
|
from src.backend.manage_requests import get_eval_requests |
|
from src.backend.manage_requests import EvalRequest |
|
|
|
|
|
def add_new_eval(model: str, base_model: str, revision: str, precision: str, private: bool, weight_type: str, model_type: str): |
|
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) |
|
|
|
user_name = "" |
|
model_path = model |
|
if "/" in model: |
|
tokens = model.split("/") |
|
user_name = tokens[0] |
|
model_path = tokens[1] |
|
|
|
precision = precision.split(" ")[0] |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
|
|
if model_type is None or model_type == "": |
|
return print("Please select a model type.") |
|
|
|
|
|
if revision == "": |
|
revision = "main" |
|
|
|
|
|
if weight_type in ["Delta", "Adapter"]: |
|
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True) |
|
if not base_model_on_hub: |
|
print(f'Base model "{base_model}" {error}') |
|
return |
|
|
|
if not weight_type == "Adapter": |
|
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True) |
|
if not model_on_hub: |
|
print(f'Model "{model}" {error}') |
|
return |
|
|
|
|
|
try: |
|
model_info = API.model_info(repo_id=model, revision=revision) |
|
except Exception: |
|
print("Could not get your model information. Please fill it up properly.") |
|
return |
|
|
|
model_size = get_model_size(model_info=model_info, precision=precision) |
|
|
|
license = 'none' |
|
try: |
|
license = model_info.cardData["license"] |
|
except Exception: |
|
print("Please select a license for your model") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Adding new eval") |
|
|
|
eval_entry = { |
|
"model": model, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"private": private, |
|
"precision": precision, |
|
"weight_type": weight_type, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
"model_type": model_type, |
|
"likes": model_info.likes, |
|
"params": model_size, |
|
"license": license, |
|
} |
|
|
|
|
|
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: |
|
print("This model has been already submitted.") |
|
return |
|
|
|
print("Creating eval file") |
|
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json" |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
print("Uploading eval file") |
|
API.upload_file(path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], |
|
repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue") |
|
|
|
|
|
os.remove(out_path) |
|
|
|
print("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.") |
|
return |
|
|
|
|
|
def main(): |
|
from huggingface_hub import HfApi |
|
|
|
api = HfApi() |
|
model_lst = api.list_models() |
|
|
|
model_lst = [m for m in model_lst] |
|
|
|
def custom_filter(m) -> bool: |
|
|
|
|
|
res = 'mistralai/' in m.id |
|
return res |
|
|
|
filtered_model_lst = sorted([m for m in model_lst if custom_filter(m)], key=lambda m: m.downloads, reverse=True) |
|
|
|
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) |
|
|
|
PENDING_STATUS = "PENDING" |
|
RUNNING_STATUS = "RUNNING" |
|
FINISHED_STATUS = "FINISHED" |
|
FAILED_STATUS = "FAILED" |
|
|
|
status = [PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS] |
|
|
|
|
|
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) |
|
|
|
requested_model_names = {e.model for e in eval_requests} |
|
|
|
|
|
|
|
for i in range(min(200, len(filtered_model_lst))): |
|
model = filtered_model_lst[i] |
|
|
|
print(f'Considering {model.id} ..') |
|
|
|
is_finetuned = any(tag.startswith('base_model:') for tag in model.tags) |
|
|
|
model_type = 'pretrained' |
|
if is_finetuned: |
|
model_type = "fine-tuned" |
|
|
|
is_instruction_tuned = 'nstruct' in model.id |
|
if is_instruction_tuned: |
|
model_type = "instruction-tuned" |
|
|
|
if model.id not in requested_model_names: |
|
|
|
if 'mage' not in model.id: |
|
add_new_eval(model=model.id, base_model='', revision='main', precision='float32', private=False, weight_type='Original', model_type=model_type) |
|
time.sleep(10) |
|
else: |
|
print(f'Model {model.id} already added, not adding it to the queue again.') |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|