|
import os |
|
import json |
|
import glob |
|
|
|
from tqdm import tqdm |
|
from huggingface_hub import HfApi, snapshot_download |
|
from src.backend.manage_requests import EvalRequest |
|
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND_SYNC |
|
from src.envs import QUEUE_REPO, API |
|
from src.envs import EVAL_REQUESTS_PATH_OPEN_LLM, QUEUE_REPO_OPEN_LLM |
|
from src.utils import my_snapshot_download |
|
|
|
def my_set_eval_request(api, json_filepath, hf_repo, local_dir): |
|
for i in range(10): |
|
try: |
|
set_eval_request(api=api, json_filepath=json_filepath, hf_repo=hf_repo, local_dir=local_dir) |
|
return |
|
except Exception: |
|
time.sleep(60) |
|
return |
|
|
|
|
|
def set_eval_request(api: HfApi, json_filepath: str, hf_repo: str, local_dir: str): |
|
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)""" |
|
|
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
with open(json_filepath, "w") as f: |
|
f.write(json.dumps(data)) |
|
|
|
api.upload_file(path_or_fileobj=json_filepath, path_in_repo=json_filepath.replace(local_dir, ""), |
|
repo_id=hf_repo, repo_type="dataset") |
|
|
|
|
|
def get_request_file_for_model(data, requests_path): |
|
model_name = data["model"] |
|
precision = data["precision"] |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED and RUNNING""" |
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
|
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if req_content["precision"] == precision.split(".")[-1]: |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
def update_model_type(data, requests_path): |
|
open_llm_request_file = get_request_file_for_model(data, requests_path) |
|
|
|
try: |
|
with open(open_llm_request_file, "r") as f: |
|
open_llm_request = json.load(f) |
|
data["model_type"] = open_llm_request["model_type"] |
|
return True, data |
|
except: |
|
return False, data |
|
|
|
|
|
def read_and_write_json_files(directory, requests_path_open_llm): |
|
|
|
for subdir, dirs, files in tqdm(os.walk(directory), desc="updating model type according to open llm leaderboard"): |
|
for file in files: |
|
|
|
if file.endswith('.json'): |
|
file_path = os.path.join(subdir, file) |
|
|
|
with open(file_path, 'r') as json_file: |
|
data = json.load(json_file) |
|
sucess, data = update_model_type(data, requests_path_open_llm) |
|
if sucess: |
|
with open(file_path, 'w') as json_file: |
|
json.dump(data, json_file) |
|
my_set_eval_request(api=API, json_filepath=file_path, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND_SYNC) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
my_snapshot_download(repo_id=QUEUE_REPO_OPEN_LLM, revision="main", local_dir=EVAL_REQUESTS_PATH_OPEN_LLM, repo_type="dataset", max_workers=60) |
|
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND_SYNC, repo_type="dataset", max_workers=60) |
|
read_and_write_json_files(EVAL_REQUESTS_PATH_BACKEND_SYNC, EVAL_REQUESTS_PATH_OPEN_LLM) |