|
import os |
|
from typing import Union, List |
|
|
|
from lm_eval.api.task import ConfigurableTask |
|
from lm_eval.api.instance import Instance |
|
|
|
|
|
from lm_eval.api.metrics import mean |
|
|
|
from src.backend.envs import DEVICE |
|
|
|
import spacy |
|
from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckNLI, SelfCheckBERTScore, SelfCheckNgram |
|
|
|
|
|
|
|
class SelfCheckGPT(ConfigurableTask): |
|
VERSION = 0.0 |
|
DATASET_PATH = "potsawee/wiki_bio_gpt3_hallucination" |
|
DATASET_NAME = None |
|
OUTPUT_TYPE = "generate_until" |
|
|
|
def __init__(self): |
|
super().__init__(config={"metadata": {"version": self.VERSION}}) |
|
|
|
|
|
self.generation_kwargs = {"until": ["<im_end>"], "max_length": 1024} |
|
self.generation_kwargs_sampling_number = 5 |
|
self.generation_kwargs_sampling = { |
|
"temperature": 0.99, |
|
"do_sample": True, |
|
"until": ["<im_end>", "</s>"], |
|
"max_length": 1024, |
|
} |
|
|
|
self.selfcheckgpt_type = os.environ.get("SELFCHECKGPTTYPE", "SelfCheckNLI") |
|
self.selfcheckgpt_device = os.environ.get("SELFCHECKGPTDEVICE", DEVICE) |
|
self.selfcheckgpt_nlp = spacy.load("en_core_web_sm") |
|
|
|
if self.selfcheckgpt_type == "SelfCheckNgram": |
|
self.selfcheckgpt = SelfCheckNgram(n=1) |
|
elif self.selfcheckgpt_type == "SelfCheckBERTScore": |
|
self.selfcheckgpt = SelfCheckBERTScore(rescale_with_baseline=True) |
|
elif self.selfcheckgpt_type == "SelfCheckMQAG": |
|
self.selfcheckgpt = SelfCheckMQAG(device=self.selfcheckgpt_device) |
|
elif self.selfcheckgpt_type == "SelfCheckNLI": |
|
self.selfcheckgpt = SelfCheckNLI(device=self.selfcheckgpt_device) |
|
self.SelfCheckNLI_error_cnt = 0 |
|
|
|
def has_training_docs(self): |
|
return False |
|
|
|
def has_validation_docs(self): |
|
return True |
|
|
|
def has_test_docs(self): |
|
return False |
|
|
|
def validation_docs(self): |
|
return self.dataset["evaluation"] |
|
|
|
def doc_to_text(self, doc): |
|
if not hasattr(self, "selfcheckgpt_nlp"): |
|
self.selfcheckgpt_nlp = spacy.load("en_core_web_sm") |
|
|
|
sentences = [x.text.strip() for x in self.selfcheckgpt_nlp(doc["wiki_bio_text"]).sents] |
|
if len(sentences) < 2: |
|
raise ValueError("This wikipedia passage is too short for self-consistency check: {sentences}") |
|
|
|
|
|
doc_text = f"Please generate a Wikipedia passage that consists of at least two sentences, starting with the following sentence: {sentences[0]}\n" |
|
return doc_text |
|
|
|
def doc_to_target(self, doc): |
|
answer = doc["wiki_bio_text"] |
|
return answer |
|
|
|
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> Union[List[Instance], Instance]: |
|
arguments = (ctx, self.generation_kwargs) |
|
request_list = [ |
|
Instance(request_type="generate_until", doc=doc, arguments=arguments, idx=0, **kwargs), |
|
] |
|
sampling_arguments = (ctx, self.generation_kwargs_sampling) |
|
request_list.extend( |
|
[ |
|
Instance(request_type="generate_until", doc=doc, arguments=sampling_arguments, idx=idx, **kwargs) |
|
for idx in range(1, self.generation_kwargs_sampling_number + 1) |
|
] |
|
) |
|
return request_list |
|
|
|
def process_results(self, doc, results): |
|
response_temperature_0 = results[0] |
|
other_responses = results[1:] |
|
passage = self.doc_to_target(doc) |
|
|
|
sentences = self.selfcheckgpt_nlp(response_temperature_0) |
|
sentences = [sent.text.strip() for sent in sentences.sents] |
|
if self.selfcheckgpt_type == "SelfCheckNgram": |
|
selfcheckgpt_scores = self.selfcheckgpt.predict( |
|
sentences=sentences, passage=response_temperature_0, sampled_passages=other_responses |
|
) |
|
return { |
|
"avg-selfcheckgpt": selfcheckgpt_scores["doc_level"]["avg_neg_logprob"], |
|
"max-selfcheckgpt": selfcheckgpt_scores["doc_level"]["avg_max_neg_logprob"], |
|
} |
|
|
|
elif self.selfcheckgpt_type == "SelfCheckBERTScore": |
|
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses) |
|
elif self.selfcheckgpt_type == "SelfCheckMQAG": |
|
selfcheckgpt_scores = self.selfcheckgpt.predict( |
|
sentences=sentences, |
|
passage=response_temperature_0, |
|
sampled_passages=other_responses, |
|
num_questions_per_sent=5, |
|
scoring_method="bayes_with_alpha", |
|
beta1=0.8, |
|
beta2=0.8, |
|
) |
|
elif self.selfcheckgpt_type == "SelfCheckNLI": |
|
selfcheckgpt_scores = self.selfcheckgpt.predict(sentences=sentences, sampled_passages=other_responses) |
|
|
|
if len(selfcheckgpt_scores) < 2: |
|
|
|
self.SelfCheckNLI_error_cnt += 1 |
|
result = {"avg-selfcheckgpt": 0.0, "max-selfcheckgpt": 0.0} |
|
|
|
else: |
|
threshold = 0.7 |
|
|
|
selfcheckgpt_scores_max = 0.0 if max(selfcheckgpt_scores) > threshold else 1.0 |
|
|
|
selfcheckgpt_scores_avg = ( |
|
0.0 if sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) > threshold else 1.0 |
|
) |
|
result = {"avg-selfcheckgpt": selfcheckgpt_scores_avg, "max-selfcheckgpt": selfcheckgpt_scores_max} |
|
|
|
return result |
|
|
|
selfcheckgpt_scores_avg = ( |
|
sum(selfcheckgpt_scores) / len(selfcheckgpt_scores) if len(selfcheckgpt_scores) > 0 else 0 |
|
) |
|
selfcheckgpt_scores_max = max(selfcheckgpt_scores) |
|
|
|
return {"avg-selfcheckgpt": selfcheckgpt_scores_avg, "max-selfcheckgpt": selfcheckgpt_scores_max} |
|
|
|
def aggregation(self): |
|
""" |
|
:returns: {str: [float] -> float} |
|
A dictionary where keys are the names of submetrics and values are |
|
functions that aggregate a list of metrics |
|
""" |
|
return {k: mean for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]} |
|
|
|
def higher_is_better(self): |
|
""" |
|
:returns: {str: bool} |
|
A dictionary where keys are the names of submetrics and values are |
|
whether a higher value of the submetric is better |
|
""" |
|
return {k: True for k in ["avg-selfcheckgpt", "max-selfcheckgpt"]} |
|
|