pingnie's picture
add gpu info
84f0fa3
raw
history blame
11 kB
import glob
import json
import os
from tqdm import tqdm
from dataclasses import dataclass
import dateutil
# import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
from typing import Optional
def is_float(string):
try:
float(string)
return True
except ValueError:
return False
@dataclass
class EvalResult:
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown" # From config file
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
inference_framework: str = "Unknown"
@staticmethod
def init_from_json_file(json_filepath, is_backend: bool = False):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
# We manage the legacy config format
config = data.get("config", data.get("config_general", None))
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
# Get inference framework
inference_framework = config.get("inference_framework", "Unknown")
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, error, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
# data['results'] is {'nq_open': {'em': 0.24293628808864265, 'em_stderr': 0.007138697341112125}}
results = {}
for benchmark, benchmark_results in data["results"].items():
if benchmark not in results:
results[benchmark] = {}
for metric, value in benchmark_results.items():
to_add = True
if "_stderr" in metric:
to_add = False
if "alias" in metric:
to_add = False
if "," in metric:
metric = metric.split(",")[0]
metric = metric.replace("exact_match", "em")
if to_add is True:
multiplier = 100.0
if "GPU" in metric:
results[benchmark][metric] = value
continue
if "rouge" in metric and "truthful" not in benchmark:
multiplier = 1.0
if "squad" in benchmark:
multiplier = 1.0
if "time" in metric:
multiplier = 1.0
if "throughput" in metric:
multiplier = 1.0
if "batch_" in metric or "Mem" in metric or "Util" in metric:
multiplier = 1
# print('RESULTS', data['results'])
# print('XXX', benchmark, metric, value, multiplier)
results[benchmark][metric] = value * multiplier
res = EvalResult(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
inference_framework=inference_framework,
)
return res
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
self.inference_framework = request.get("inference_framework", "Unknown")
except Exception as e:
print(f"Could not find request file for {self.org}/{self.model} -- path: {requests_path} -- {e}")
def is_complete(self) -> bool:
for task in Tasks:
if task.value.benchmark not in self.results:
return False
return True
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# breakpoint()
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.inference_framework.name: self.inference_framework,
}
for task in Tasks:
if task.value.benchmark in self.results:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED and RUNNING"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["precision"] == precision.split(".")[-1]:
request_file = tmp_request_file
return request_file
def get_request_file_for_model_open_llm(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
request_file = tmp_request_file
return request_file
def update_model_type_with_open_llm_request_file(result, open_llm_requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model_open_llm(
open_llm_requests_path, result.full_model, result.precision.value.name
)
if request_file:
try:
with open(request_file, "r") as f:
request = json.load(f)
open_llm_model_type = request.get("model_type", "Unknown")
if open_llm_model_type != "Unknown":
result.model_type = ModelType.from_str(open_llm_model_type)
except Exception as e:
pass
return result
def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool = False) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in tqdm(model_result_filepaths, desc="reading model_result_filepaths"):
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath, is_backend=is_backend)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
results.append(v)
return results