|
|
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
from src.backend.manage_requests import get_eval_requests |
|
from src.backend.sort_queue import sort_models_by_priority |
|
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND |
|
|
|
from src.backend.manage_requests import EvalRequest |
|
from src.leaderboard.read_evals import EvalResult |
|
|
|
from src.envs import QUEUE_REPO, RESULTS_REPO, API |
|
|
|
import logging |
|
import pprint |
|
|
|
logging.getLogger("openai").setLevel(logging.WARNING) |
|
|
|
logging.basicConfig(level=logging.ERROR) |
|
pp = pprint.PrettyPrinter(width=80) |
|
|
|
PENDING_STATUS = "PENDING" |
|
RUNNING_STATUS = "RUNNING" |
|
FINISHED_STATUS = "FINISHED" |
|
FAILED_STATUS = "FAILED" |
|
|
|
TASKS_HARNESS = [task.value for task in Tasks] |
|
|
|
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60) |
|
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) |
|
|
|
|
|
def request_to_result_name(request: EvalRequest) -> str: |
|
org_and_model = request.model.split("/", 1) |
|
if len(org_and_model) == 1: |
|
model = org_and_model[0] |
|
res = f"{model}_{request.precision}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
res = f"{org}_{model}_{request.precision}" |
|
return res |
|
|
|
|
|
def process_finished_requests() -> bool: |
|
current_finished_status = [FINISHED_STATUS] |
|
|
|
if False: |
|
import os |
|
import dateutil |
|
model_result_filepaths = [] |
|
results_path = f'{EVAL_RESULTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B' |
|
requests_path = f'{EVAL_REQUESTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B_eval_request_False_False_False.json' |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError: |
|
files = [files[-1]] |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
eval_result.update_with_request_file(requests_path) |
|
|
|
print('XXX', eval_result) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
print(eval_results) |
|
|
|
return True |
|
|
|
|
|
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) |
|
|
|
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests) |
|
|
|
|
|
|
|
|
|
import random |
|
random.shuffle(eval_requests) |
|
|
|
from src.leaderboard.read_evals import get_raw_eval_results |
|
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND) |
|
|
|
result_name_to_request = {request_to_result_name(r): r for r in eval_requests} |
|
result_name_to_result = {r.eval_name: r for r in eval_results} |
|
|
|
for eval_request in eval_requests: |
|
result_name: str = request_to_result_name(eval_request) |
|
|
|
|
|
from typing import Optional |
|
eval_result: Optional[EvalResult] = result_name_to_result[result_name] if result_name in result_name_to_result else None |
|
|
|
|
|
for task in TASKS_HARNESS: |
|
task_name = task.benchmark |
|
|
|
if eval_result is None or task_name not in eval_result.results: |
|
eval_request: EvalRequest = result_name_to_request[result_name] |
|
|
|
|
|
print(result_name, 'is incomplete -- missing task:', task_name, eval_result, eval_request.likes) |
|
|
|
|
|
if __name__ == "__main__": |
|
res = process_finished_requests() |
|
|