Spaces:
Paused
Paused
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
import torch | |
from llava.model import LlavaMistralForCausalLM | |
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"): | |
kwargs = {} | |
if device != "cuda": | |
kwargs['device_map'] = {"": device} | |
if load_8bit: | |
kwargs['load_in_8bit'] = True | |
elif load_4bit: | |
kwargs['load_in_4bit'] = True | |
kwargs['quantization_config'] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
else: | |
kwargs['torch_dtype'] = torch.float16 | |
if 'llava' in model_name.lower(): | |
# Load LLaVA model | |
if 'mistral' in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = LlavaMistralForCausalLM.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=False, | |
use_flash_attention_2=False, | |
**kwargs | |
) | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print('Convert to FP16...') | |
model.to(torch.float16) | |
else: | |
use_fast = False | |
if 'mpt' in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
image_processor = None | |
if 'llava' in model_name.lower(): # or 'mistral' in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
vision_tower.to(device=device, dtype=torch.float16) | |
model.model.mm_projector.to(device=device, dtype=torch.float16) | |
model.to(device=device, dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |