Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -11,26 +11,17 @@ print(torch.cuda.is_available())
|
|
11 |
|
12 |
print(os.system('python -m bitsandbytes'))
|
13 |
|
14 |
-
import
|
15 |
-
import torch
|
16 |
-
import warnings
|
17 |
-
warnings.filterwarnings('ignore')
|
18 |
-
|
19 |
import io
|
20 |
from contextlib import redirect_stdout
|
21 |
-
import
|
22 |
-
|
23 |
-
from
|
24 |
-
from llava.
|
25 |
from llava.eval.run_llava import eval_model
|
26 |
|
27 |
-
#
|
28 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
-
print(f"Using device: {device}")
|
30 |
-
|
31 |
-
# Define the model path
|
32 |
model_path = "Veda0718/llava-med-v1.5-mistral-7b-finetuned"
|
33 |
-
|
34 |
kwargs = {"device_map": "auto"}
|
35 |
kwargs['load_in_4bit'] = True
|
36 |
kwargs['quantization_config'] = BitsAndBytesConfig(
|
@@ -42,48 +33,44 @@ kwargs['quantization_config'] = BitsAndBytesConfig(
|
|
42 |
model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
44 |
|
45 |
-
# Define the inference function
|
46 |
-
def run_inference(image, question):
|
47 |
-
if model is None:
|
48 |
-
return "Model failed to load. Please check the logs."
|
49 |
-
|
50 |
-
args = type('Args', (), {
|
51 |
-
"model_path": model_path,
|
52 |
-
"model_base": None,
|
53 |
-
"image_file": image,
|
54 |
-
"query": question,
|
55 |
-
"conv_mode": None,
|
56 |
-
"sep": ",",
|
57 |
-
"temperature": 0,
|
58 |
-
"top_p": None,
|
59 |
-
"num_beams": 1,
|
60 |
-
"max_new_tokens": 256
|
61 |
-
})()
|
62 |
-
|
63 |
-
# Capture the printed output of eval_model
|
64 |
-
f = io.StringIO()
|
65 |
-
with redirect_stdout(f):
|
66 |
-
eval_model(args)
|
67 |
-
output = f.getvalue()
|
68 |
-
return output
|
69 |
-
|
70 |
-
# Create the Gradio interface
|
71 |
with gr.Blocks(theme=gr.themes.Monochrome()) as app:
|
72 |
with gr.Column(scale=1):
|
73 |
-
gr.Markdown("<center><h1>
|
74 |
|
75 |
with gr.Row():
|
76 |
image = gr.Image(type="filepath", scale=2)
|
77 |
-
question = gr.Textbox(placeholder="Enter a question", scale=3)
|
78 |
|
79 |
with gr.Row():
|
80 |
-
answer = gr.Textbox(placeholder="Answer pops up here", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
with gr.Row():
|
83 |
btn = gr.Button("Run Inference", scale=1)
|
84 |
|
85 |
btn.click(fn=run_inference, inputs=[image, question], outputs=answer)
|
86 |
|
87 |
-
|
88 |
-
if __name__ == "__main__":
|
89 |
-
app.queue().launch(debug=True)
|
|
|
11 |
|
12 |
print(os.system('python -m bitsandbytes'))
|
13 |
|
14 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
15 |
import io
|
16 |
from contextlib import redirect_stdout
|
17 |
+
import openai
|
18 |
+
import torch
|
19 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig
|
20 |
+
from llava.model import LlavaMistralForCausalLM
|
21 |
from llava.eval.run_llava import eval_model
|
22 |
|
23 |
+
# LLaVa-Med model setup
|
|
|
|
|
|
|
|
|
24 |
model_path = "Veda0718/llava-med-v1.5-mistral-7b-finetuned"
|
|
|
25 |
kwargs = {"device_map": "auto"}
|
26 |
kwargs['load_in_4bit'] = True
|
27 |
kwargs['quantization_config'] = BitsAndBytesConfig(
|
|
|
33 |
model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
with gr.Blocks(theme=gr.themes.Monochrome()) as app:
|
37 |
with gr.Column(scale=1):
|
38 |
+
gr.Markdown("<center><h1>LLaVa-Med</h1></center>")
|
39 |
|
40 |
with gr.Row():
|
41 |
image = gr.Image(type="filepath", scale=2)
|
42 |
+
question = gr.Textbox(placeholder="Enter a question", label="Question", scale=3)
|
43 |
|
44 |
with gr.Row():
|
45 |
+
answer = gr.Textbox(placeholder="Answer pops up here", label="Answer", scale=1)
|
46 |
+
|
47 |
+
def run_inference(image, question):
|
48 |
+
# Arguments for the model
|
49 |
+
args = type('Args', (), {
|
50 |
+
"model_path": model_path,
|
51 |
+
"model_base": None,
|
52 |
+
"image_file": image,
|
53 |
+
"query": question,
|
54 |
+
"conv_mode": None,
|
55 |
+
"sep": ",",
|
56 |
+
"temperature": 0,
|
57 |
+
"top_p": None,
|
58 |
+
"num_beams": 1,
|
59 |
+
"max_new_tokens": 512
|
60 |
+
})()
|
61 |
+
|
62 |
+
# Capture the printed output of eval_model
|
63 |
+
f = io.StringIO()
|
64 |
+
with redirect_stdout(f):
|
65 |
+
eval_model(args)
|
66 |
+
llava_med_result = f.getvalue()
|
67 |
+
print(llava_med_result)
|
68 |
+
|
69 |
+
return llava_med_result
|
70 |
|
71 |
with gr.Row():
|
72 |
btn = gr.Button("Run Inference", scale=1)
|
73 |
|
74 |
btn.click(fn=run_inference, inputs=[image, question], outputs=answer)
|
75 |
|
76 |
+
app.launch(debug=True, height=800, width="100%")
|
|
|
|