Spaces:
Runtime error
Runtime error
adding pipeline
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor,
|
5 |
from colpali_engine.models import ColPali, ColPaliProcessor
|
6 |
from huggingface_hub import login
|
7 |
import os
|
@@ -15,10 +15,9 @@ hf_token = os.getenv('HF_TOKEN')
|
|
15 |
# Log in to Hugging Face Hub (this will authenticate globally)
|
16 |
login(token=hf_token)
|
17 |
|
18 |
-
#
|
19 |
try:
|
20 |
-
|
21 |
-
model_img_to_text = AutoModelForImageToText.from_pretrained("google/paligemma-3b-mix-448").to(device)
|
22 |
except Exception as e:
|
23 |
st.error(f"Error loading image-to-text model: {e}")
|
24 |
st.stop()
|
@@ -52,11 +51,8 @@ if uploaded_file is not None:
|
|
52 |
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
53 |
st.write("")
|
54 |
|
55 |
-
# Use the image-to-text
|
56 |
-
|
57 |
-
with torch.no_grad():
|
58 |
-
generated_ids_img_to_text = model_img_to_text.generate(**inputs_img_to_text, max_new_tokens=128)
|
59 |
-
output_text_img_to_text = processor_img_to_text.batch_decode(generated_ids_img_to_text, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
60 |
|
61 |
st.write("Extracted Text from Image:")
|
62 |
st.write(output_text_img_to_text)
|
@@ -78,7 +74,7 @@ if uploaded_file is not None:
|
|
78 |
# Keyword search in the extracted text
|
79 |
keyword = st.text_input("Enter a keyword to search in the extracted text:")
|
80 |
if keyword:
|
81 |
-
if keyword.lower() in output_text_img_to_text[0].lower():
|
82 |
st.write(f"Keyword '{keyword}' found in the text.")
|
83 |
else:
|
84 |
st.write(f"Keyword '{keyword}' not found in the text.")
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, pipeline
|
5 |
from colpali_engine.models import ColPali, ColPaliProcessor
|
6 |
from huggingface_hub import login
|
7 |
import os
|
|
|
15 |
# Log in to Hugging Face Hub (this will authenticate globally)
|
16 |
login(token=hf_token)
|
17 |
|
18 |
+
# Use pipeline for image-to-text task
|
19 |
try:
|
20 |
+
image_to_text_pipeline = pipeline("image-to-text", model="google/paligemma-3b-mix-448", device=0 if torch.cuda.is_available() else -1)
|
|
|
21 |
except Exception as e:
|
22 |
st.error(f"Error loading image-to-text model: {e}")
|
23 |
st.stop()
|
|
|
51 |
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
52 |
st.write("")
|
53 |
|
54 |
+
# Use the image-to-text pipeline to extract text from the image
|
55 |
+
output_text_img_to_text = image_to_text_pipeline(image)
|
|
|
|
|
|
|
56 |
|
57 |
st.write("Extracted Text from Image:")
|
58 |
st.write(output_text_img_to_text)
|
|
|
74 |
# Keyword search in the extracted text
|
75 |
keyword = st.text_input("Enter a keyword to search in the extracted text:")
|
76 |
if keyword:
|
77 |
+
if keyword.lower() in output_text_img_to_text[0]['generated_text'].lower():
|
78 |
st.write(f"Keyword '{keyword}' found in the text.")
|
79 |
else:
|
80 |
st.write(f"Keyword '{keyword}' not found in the text.")
|