sprakhil commited on
Commit
1bd5d8d
·
1 Parent(s): 6d4955e

using gradio instead of streamlit

Browse files
Files changed (1) hide show
  1. app.py +9 -0
app.py CHANGED
@@ -38,9 +38,15 @@ except Exception as e:
38
  # Function to process the image and extract text
39
  def process_image(image, keyword):
40
  try:
 
 
 
41
  # Use the image-to-text pipeline to extract text from the image
42
  output_text_img_to_text = image_to_text_pipeline(image)
43
 
 
 
 
44
  # Prepare input for Qwen model for image description
45
  conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
46
  text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True)
@@ -52,6 +58,9 @@ def process_image(image, keyword):
52
  generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)]
53
  output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True)
54
 
 
 
 
55
  extracted_text = output_text_img_to_text[0]['generated_text']
56
 
57
  # Keyword search in the extracted text
 
38
  # Function to process the image and extract text
39
  def process_image(image, keyword):
40
  try:
41
+ # Debugging: Check the type of the input image
42
+ print(f"Received image of type: {type(image)}")
43
+
44
  # Use the image-to-text pipeline to extract text from the image
45
  output_text_img_to_text = image_to_text_pipeline(image)
46
 
47
+ # Debugging: Check the output of the image-to-text model
48
+ print(f"Output from image-to-text pipeline: {output_text_img_to_text}")
49
+
50
  # Prepare input for Qwen model for image description
51
  conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
52
  text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True)
 
58
  generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)]
59
  output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True)
60
 
61
+ # Debugging: Check the output from the Qwen model
62
+ print(f"Output from Qwen model: {output_text_qwen}")
63
+
64
  extracted_text = output_text_img_to_text[0]['generated_text']
65
 
66
  # Keyword search in the extracted text