Spaces:
Runtime error
Runtime error
resolving pipeline issue
Browse files
app.py
CHANGED
@@ -1,36 +1,45 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor,
|
5 |
from colpali_engine.models import ColPali, ColPaliProcessor
|
6 |
import os
|
7 |
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
|
|
10 |
hf_token = os.getenv('HF_TOKEN')
|
|
|
|
|
11 |
try:
|
12 |
-
|
|
|
13 |
except Exception as e:
|
14 |
st.error(f"Error loading image-to-text model: {e}")
|
15 |
st.stop()
|
16 |
|
|
|
17 |
try:
|
18 |
-
model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device)
|
19 |
-
processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448")
|
20 |
except Exception as e:
|
21 |
st.error(f"Error loading ColPali model or processor: {e}")
|
22 |
st.stop()
|
23 |
|
|
|
24 |
try:
|
25 |
-
model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device)
|
26 |
-
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
27 |
except Exception as e:
|
28 |
st.error(f"Error loading Qwen model or processor: {e}")
|
29 |
st.stop()
|
30 |
|
|
|
31 |
st.title("OCR and Document Search Web Application")
|
32 |
st.write("Upload an image containing text in both Hindi and English for OCR processing and keyword search.")
|
33 |
|
|
|
34 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
35 |
|
36 |
if uploaded_file is not None:
|
@@ -39,21 +48,33 @@ if uploaded_file is not None:
|
|
39 |
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
40 |
st.write("")
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
|
43 |
text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True)
|
44 |
-
|
45 |
|
|
|
46 |
with torch.no_grad():
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
st.write("
|
52 |
-
st.write(
|
53 |
|
|
|
54 |
keyword = st.text_input("Enter a keyword to search in the extracted text:")
|
55 |
if keyword:
|
56 |
-
if keyword.lower() in
|
57 |
st.write(f"Keyword '{keyword}' found in the text.")
|
58 |
else:
|
59 |
st.write(f"Keyword '{keyword}' not found in the text.")
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForImageToText
|
5 |
from colpali_engine.models import ColPali, ColPaliProcessor
|
6 |
import os
|
7 |
|
8 |
+
# Set device for computation
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
11 |
+
# Get Hugging Face token from environment variables
|
12 |
hf_token = os.getenv('HF_TOKEN')
|
13 |
+
|
14 |
+
# Load the processor and image-to-text model directly using Hugging Face token
|
15 |
try:
|
16 |
+
processor_img_to_text = AutoProcessor.from_pretrained("google/paligemma-3b-mix-448", use_auth_token=hf_token)
|
17 |
+
model_img_to_text = AutoModelForImageToText.from_pretrained("google/paligemma-3b-mix-448", use_auth_token=hf_token).to(device)
|
18 |
except Exception as e:
|
19 |
st.error(f"Error loading image-to-text model: {e}")
|
20 |
st.stop()
|
21 |
|
22 |
+
# Load ColPali model with Hugging Face token
|
23 |
try:
|
24 |
+
model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16, use_auth_token=hf_token).to(device)
|
25 |
+
processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448", use_auth_token=hf_token)
|
26 |
except Exception as e:
|
27 |
st.error(f"Error loading ColPali model or processor: {e}")
|
28 |
st.stop()
|
29 |
|
30 |
+
# Load Qwen model with Hugging Face token
|
31 |
try:
|
32 |
+
model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", use_auth_token=hf_token).to(device)
|
33 |
+
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", use_auth_token=hf_token)
|
34 |
except Exception as e:
|
35 |
st.error(f"Error loading Qwen model or processor: {e}")
|
36 |
st.stop()
|
37 |
|
38 |
+
# Streamlit UI
|
39 |
st.title("OCR and Document Search Web Application")
|
40 |
st.write("Upload an image containing text in both Hindi and English for OCR processing and keyword search.")
|
41 |
|
42 |
+
# File uploader for the image
|
43 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
44 |
|
45 |
if uploaded_file is not None:
|
|
|
48 |
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
49 |
st.write("")
|
50 |
|
51 |
+
# Use the image-to-text model to extract text from the image
|
52 |
+
inputs_img_to_text = processor_img_to_text(images=image, return_tensors="pt").to(device)
|
53 |
+
with torch.no_grad():
|
54 |
+
generated_ids_img_to_text = model_img_to_text.generate(**inputs_img_to_text, max_new_tokens=128)
|
55 |
+
output_text_img_to_text = processor_img_to_text.batch_decode(generated_ids_img_to_text, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
56 |
+
|
57 |
+
st.write("Extracted Text from Image:")
|
58 |
+
st.write(output_text_img_to_text)
|
59 |
+
|
60 |
+
# Prepare input for Qwen model for image description
|
61 |
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
|
62 |
text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True)
|
63 |
+
inputs_qwen = processor_qwen(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to(device)
|
64 |
|
65 |
+
# Generate response with Qwen model
|
66 |
with torch.no_grad():
|
67 |
+
output_ids_qwen = model_qwen.generate(**inputs_qwen, max_new_tokens=128)
|
68 |
+
generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)]
|
69 |
+
output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
70 |
|
71 |
+
st.write("Qwen Model Description:")
|
72 |
+
st.write(output_text_qwen)
|
73 |
|
74 |
+
# Keyword search in the extracted text
|
75 |
keyword = st.text_input("Enter a keyword to search in the extracted text:")
|
76 |
if keyword:
|
77 |
+
if keyword.lower() in output_text_img_to_text[0].lower():
|
78 |
st.write(f"Keyword '{keyword}' found in the text.")
|
79 |
else:
|
80 |
st.write(f"Keyword '{keyword}' not found in the text.")
|