import os, sys import random import datetime import glob import markov import pickle corpus = [] song = [] "Generate sheet music for a new song from a corpus of existing songs in abc format" # get the list of filenames (abc files downloaded from http://www.norbeck.nu/abc/) # getdirs = [] # dirs = ["hn201612/i/*.abc", "hn201612/s/*.abc"] # dirs = ["data/*.abc"] # dirs = ["data"] # for dir1 in dirs: # for filename in glob.iglob(dir1): # getdirs += [filename] #Finds all absolute paths in directory #https://stackoverflow.com/questions/9816816/get-absolute-paths-of-all-files-in-a-directory def abs_paths(dir): for dir_path,_,filenames in os.walk(dir): for f in filenames: yield os.path.abspath(os.path.join(dir_path, f)) # ex_filename = "hn201612/i/hnsong1.abc" # parsing on file to extract songs and add them to corpus for filename in abs_paths("n-grams/data/hard"): with open(filename) as f: lines = f.readlines() last = len(lines) for index, line in enumerate(lines): if (line.find("|") < 0 and index - 1 == last): # if the next line does not have pipes add song to corpus and then set song variable empty again corpus.append(song) song = [] else: if line.find("|") > -1: # a line should be split on "|" and copied to the corpus if it has pipes sline = line.split("|") # add the list of measures to the song song += [x.strip("\r\n") for x in sline if len(x.strip("\r\n")) > 0] last = index print("Training on {} songs...".format(len(corpus))) # MARKOV PART # n-gram length for markov model n = 1 model = markov.generate_model_from_token_lists(corpus, n) # save pickle with open('markov_chain.pickle', 'wb') as handle: pickle.dump(model, handle) def nextword(word): return markov.generate(model, 3, seed=word, max_iterations=1) def writesong(songlength, first): song = [first] for i in range(songlength): song += nextword(str(song[-1])) return song # choose a random song length from list of song lengths in corpus lengthofsong = random.choice([len(x) for x in corpus if len(x) > 10]) print("Song length will be {}".format(lengthofsong)) firstnote = markov.generate(model, n, max_iterations=3)[0] # print "first note: {}".format(firstnote) print("Here is the song in abc format:") song = writesong(lengthofsong, firstnote) dob = datetime.datetime.now().strftime('%H%M') print(dob) print(song) # make song file songname = "n-grams/gen_songs_abc/gen_song_{}.abc".format(dob) print("\n\nYou can find the song in {}".format(songname)) lastpart = lengthofsong - lengthofsong%4 # hack to include dictionary at the beginning of every abc file # will add a more sophisticated way to generate the values in the future title = "Markov Song {}".format(dob) songbeginning = ['X:1','T:' + title, 'R:song', 'C:Visakh Ajith', 'Z:id:hn-song-111', 'M:3/4', 'L:1/8', 'Q:1/4=120', 'K:G' ] songbeginning = [x+"\n" for x in songbeginning] # convert song to abc format and write to file newsong = open(songname, 'w') newsong.writelines(songbeginning) for i in range(lastpart): newsong.write(" | ".join(song[i:i+3]) + "\n") newsong.write(" | ".join(song[lastpart:lengthofsong])) #abc2ly markov.abc # lilypond -fpng markov.ly