Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, in_planes, planes, stride=1): | |
super(BasicBlock, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d( | |
planes, planes, kernel_size=3, stride=1, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
def forward(self, x): | |
out = torch.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
out += self.shortcut(x) | |
out = torch.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, in_planes, planes, stride=1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d( | |
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d( | |
planes, self.expansion * planes, kernel_size=1, bias=False | |
) | |
self.bn3 = nn.BatchNorm2d(self.expansion * planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion * planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d( | |
in_planes, | |
self.expansion * planes, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(self.expansion * planes), | |
) | |
def forward(self, x): | |
out = torch.relu(self.bn1(self.conv1(x))) | |
out = torch.relu(self.bn2(self.conv2(out))) | |
out = self.bn3(self.conv3(out)) | |
out += self.shortcut(x) | |
out = torch.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, num_blocks, num_classes=1000, K=10, T=0.5): | |
super(ResNet, self).__init__() | |
self.in_planes = 64 | |
self.K = K | |
self.T = T | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
def _make_layer(self, block, planes, num_blocks, stride): | |
strides = [stride] + [1] * (num_blocks - 1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_planes, planes, stride)) | |
self.in_planes = planes * block.expansion | |
return nn.Sequential(*layers) | |
def t_max_avg_pooling(self, x): | |
B, C, H, W = x.shape | |
x_flat = x.view(B, C, -1) | |
top_k_values, _ = torch.topk(x_flat, self.K, dim=2) | |
max_values = top_k_values.max(dim=2)[0] | |
avg_values = top_k_values.mean(dim=2) | |
output = torch.where(max_values >= self.T, max_values, avg_values) | |
return output | |
def forward(self, x): | |
out = torch.relu(self.bn1(self.conv1(x))) | |
out = self.maxpool(out) | |
out = self.layer1(out) | |
out = self.layer2(out) | |
out = self.layer3(out) | |
out = self.layer4(out) | |
out = self.t_max_avg_pooling(out) | |
out = out.view(out.size(0), -1) | |
out = self.fc(out) | |
return out | |
def ResNet18(num_classes=1000, K=10, T=0.5): | |
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes, K, T) | |
def ResNet34(num_classes=1000, K=10, T=0.5): | |
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes, K, T) | |
def ResNet50(num_classes=1000, K=10, T=0.5): | |
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes, K, T) | |
def ResNet101(num_classes=1000, K=10, T=0.5): | |
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes, K, T) | |
def ResNet152(num_classes=1000, K=10, T=0.5): | |
return ResNet(Bottleneck, [3, 8, 36, 3], num_classes, K, T) | |