# -*- coding: utf-8 -*- """app Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1XX8pCT291obpzL4fc1vu5L_HTG027lle """ import gradio as gr import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset("beans") # This should be the same as the first line of Python code in this Colab notebook extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') with torch.no_grad(): logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean plant disease classifier', description='Detect diseases in beans leaves using their images.') interface.launch(debug=False)