File size: 3,752 Bytes
7b856a8
 
 
 
f5ec828
872b692
f5ec828
 
 
 
872b692
f5ec828
 
 
 
 
872b692
7b856a8
f5ec828
4e3dc76
 
 
7b856a8
 
 
4e3dc76
 
 
f5ec828
4e3dc76
 
 
 
 
7b856a8
 
f5ec828
872b692
f5ec828
7b856a8
 
4e3dc76
 
 
7b856a8
 
 
 
872b692
7b856a8
 
 
 
 
 
 
f5ec828
872b692
7b856a8
4e3dc76
7b856a8
f5ec828
7b856a8
 
 
 
 
 
 
872b692
4e3dc76
7b856a8
 
 
 
 
 
f5ec828
872b692
7b856a8
4e3dc76
7b856a8
 
 
4e3dc76
 
 
 
 
7b856a8
 
 
4e3dc76
f5ec828
872b692
7b856a8
4e3dc76
7b856a8
4e3dc76
7b856a8
4e3dc76
 
 
 
7b856a8
 
 
 
f5ec828
872b692
f5ec828
7b856a8
 
4e3dc76
 
 
 
 
 
f5ec828
 
872b692
4e3dc76
 
 
f5ec828
 
7b856a8
 
 
f5ec828
872b692
f5ec828
 
7b856a8
4e3dc76
 
 
 
 
 
 
 
 
7b856a8
 
 
 
 
f5ec828
 
 
7b856a8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b57f44dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -q git+https://github.com/srush/MiniChain\n",
    "!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f675b525",
   "metadata": {
    "lines_to_next_cell": 2,
    "tags": [
     "hide_inp"
    ]
   },
   "outputs": [],
   "source": [
    "desc = \"\"\"\n",
    "### Book QA\n",
    "\n",
    "Chain that does question answering with Hugging Face embeddings. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/gatsby.ipynb)\n",
    "\n",
    "(Adapted from the [LlamaIndex example](https://github.com/jerryjliu/gpt_index/blob/main/examples/gatsby/TestGatsby.ipynb).)\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eab06e25",
   "metadata": {},
   "outputs": [],
   "source": [
    "import datasets\n",
    "import numpy as np\n",
    "from minichain import prompt, show, HuggingFaceEmbed, OpenAI"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ad893c7e",
   "metadata": {},
   "source": [
    "Load data with embeddings (computed beforehand)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c64cbf9f",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "gatsby = datasets.load_from_disk(\"gatsby\")\n",
    "gatsby.add_faiss_index(\"embeddings\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "20b8d756",
   "metadata": {},
   "source": [
    "Fast KNN retieval prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a786c893",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@prompt(HuggingFaceEmbed(\"sentence-transformers/all-mpnet-base-v2\"))\n",
    "def get_neighbors(model, inp, k=1):\n",
    "    embedding = model(inp)\n",
    "    res = olympics.get_nearest_examples(\"embeddings\", np.array(embedding), k)\n",
    "    return res.examples[\"passages\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fac56e96",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@prompt(OpenAI(),\n",
    "        template_file=\"gatsby.pmpt.tpl\")\n",
    "def ask(model, query, neighbors):\n",
    "    return model(dict(question=query, docs=neighbors))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e46761b",
   "metadata": {},
   "outputs": [],
   "source": [
    "def gatsby(query):\n",
    "    n = get_neighbors(query)\n",
    "    return ask(query, n)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9bafe2a",
   "metadata": {
    "lines_to_next_cell": 2
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "913793a8",
   "metadata": {},
   "outputs": [],
   "source": [
    "gradio = show(gatsby,\n",
    "              subprompts=[get_neighbors, ask],\n",
    "              examples=[\"What did Gatsby do before he met Daisy?\",\n",
    "                        \"What did the narrator do after getting back to Chicago?\"],\n",
    "              keys={\"HF_KEY\"},\n",
    "              description=desc,\n",
    "              )\n",
    "if __name__ == \"__main__\":\n",
    "    gradio.launch()"
   ]
  }
 ],
 "metadata": {
  "jupytext": {
   "cell_metadata_filter": "tags,-all",
   "main_language": "python",
   "notebook_metadata_filter": "-all"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}