File size: 3,752 Bytes
7b856a8 f5ec828 872b692 f5ec828 872b692 f5ec828 872b692 7b856a8 f5ec828 4e3dc76 7b856a8 4e3dc76 f5ec828 4e3dc76 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 7b856a8 872b692 7b856a8 f5ec828 872b692 7b856a8 4e3dc76 7b856a8 f5ec828 7b856a8 872b692 4e3dc76 7b856a8 f5ec828 872b692 7b856a8 4e3dc76 7b856a8 4e3dc76 7b856a8 4e3dc76 f5ec828 872b692 7b856a8 4e3dc76 7b856a8 4e3dc76 7b856a8 4e3dc76 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 f5ec828 872b692 4e3dc76 f5ec828 7b856a8 f5ec828 872b692 f5ec828 7b856a8 4e3dc76 7b856a8 f5ec828 7b856a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "b57f44dc",
"metadata": {},
"outputs": [],
"source": [
"!pip install -q git+https://github.com/srush/MiniChain\n",
"!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f675b525",
"metadata": {
"lines_to_next_cell": 2,
"tags": [
"hide_inp"
]
},
"outputs": [],
"source": [
"desc = \"\"\"\n",
"### Book QA\n",
"\n",
"Chain that does question answering with Hugging Face embeddings. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/gatsby.ipynb)\n",
"\n",
"(Adapted from the [LlamaIndex example](https://github.com/jerryjliu/gpt_index/blob/main/examples/gatsby/TestGatsby.ipynb).)\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eab06e25",
"metadata": {},
"outputs": [],
"source": [
"import datasets\n",
"import numpy as np\n",
"from minichain import prompt, show, HuggingFaceEmbed, OpenAI"
]
},
{
"cell_type": "markdown",
"id": "ad893c7e",
"metadata": {},
"source": [
"Load data with embeddings (computed beforehand)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c64cbf9f",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"gatsby = datasets.load_from_disk(\"gatsby\")\n",
"gatsby.add_faiss_index(\"embeddings\")"
]
},
{
"cell_type": "markdown",
"id": "20b8d756",
"metadata": {},
"source": [
"Fast KNN retieval prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a786c893",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"@prompt(HuggingFaceEmbed(\"sentence-transformers/all-mpnet-base-v2\"))\n",
"def get_neighbors(model, inp, k=1):\n",
" embedding = model(inp)\n",
" res = olympics.get_nearest_examples(\"embeddings\", np.array(embedding), k)\n",
" return res.examples[\"passages\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fac56e96",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"@prompt(OpenAI(),\n",
" template_file=\"gatsby.pmpt.tpl\")\n",
"def ask(model, query, neighbors):\n",
" return model(dict(question=query, docs=neighbors))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e46761b",
"metadata": {},
"outputs": [],
"source": [
"def gatsby(query):\n",
" n = get_neighbors(query)\n",
" return ask(query, n)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9bafe2a",
"metadata": {
"lines_to_next_cell": 2
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "913793a8",
"metadata": {},
"outputs": [],
"source": [
"gradio = show(gatsby,\n",
" subprompts=[get_neighbors, ask],\n",
" examples=[\"What did Gatsby do before he met Daisy?\",\n",
" \"What did the narrator do after getting back to Chicago?\"],\n",
" keys={\"HF_KEY\"},\n",
" description=desc,\n",
" )\n",
"if __name__ == \"__main__\":\n",
" gradio.launch()"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "tags,-all",
"main_language": "python",
"notebook_metadata_filter": "-all"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|