File size: 4,534 Bytes
f5ec828
 
 
 
 
872b692
f5ec828
 
 
 
872b692
f5ec828
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ca7b759",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -q git+https://github.com/srush/MiniChain\n",
    "!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cc3f2a69",
   "metadata": {
    "lines_to_next_cell": 0,
    "tags": [
     "hide_inp"
    ]
   },
   "outputs": [],
   "source": [
    "desc = \"\"\"\n",
    "### Chat\n",
    "\n",
    "A chat-like example for multi-turn chat with state. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/chat.ipynb)\n",
    "\n",
    "(Adapted from [LangChain](https://langchain.readthedocs.io/en/latest/modules/memory/examples/chatgpt_clone.html)'s version of this [blog post](https://www.engraved.blog/building-a-virtual-machine-inside/).)\n",
    "\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ca0a1eb",
   "metadata": {
    "lines_to_next_cell": 2
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4ac1417",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass, replace\n",
    "from typing import List, Tuple\n",
    "from minichain import OpenAI, prompt, show"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "56c8ab3d",
   "metadata": {},
   "source": [
    "Generic stateful Memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7c3ffeaa",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "MEMORY = 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c309a94f",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@dataclass\n",
    "class State:\n",
    "    memory: List[Tuple[str, str]]\n",
    "    human_input: str = \"\"\n",
    "\n",
    "    def push(self, response: str) -> \"State\":\n",
    "        memory = self.memory if len(self.memory) < MEMORY else self.memory[1:]\n",
    "        return State(memory + [(self.human_input, response)])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4c9a82f1",
   "metadata": {},
   "source": [
    "Chat prompt with memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "279179dd",
   "metadata": {},
   "outputs": [],
   "source": [
    "@prompt(OpenAI(), template_file=\"chat.pmpt.tpl\")\n",
    "def chat_prompt(model, state: State) -> State:\n",
    "    out = model(state)\n",
    "    result = out.split(\"Assistant:\")[-1]\n",
    "    return state.push(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2d94b22d",
   "metadata": {},
   "outputs": [],
   "source": [
    "examples = [\n",
    "    \"ls ~\",\n",
    "    \"cd ~\",\n",
    "    \"{Please make a file jokes.txt inside and put some jokes inside}\",\n",
    "    \"\"\"echo -e \"x=lambda y:y*5+3;print('Result:' + str(x(6)))\" > run.py && python3 run.py\"\"\",\n",
    "    \"\"\"echo -e \"print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])\" > run.py && python3 run.py\"\"\",\n",
    "    \"\"\"echo -e \"echo 'Hello from Docker\" > entrypoint.sh && echo -e \"FROM ubuntu:20.04\\nCOPY entrypoint.sh entrypoint.sh\\nENTRYPOINT [\\\"/bin/sh\\\",\\\"entrypoint.sh\\\"]\">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image\"\"\",\n",
    "    \"nvidia-smi\"\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d77406cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "gradio = show(lambda command, state: chat_prompt(replace(state, human_input=command)),\n",
    "              initial_state=State([]),\n",
    "              subprompts=[chat_prompt],\n",
    "              examples=examples,\n",
    "              out_type=\"json\",\n",
    "              description=desc,\n",
    ")\n",
    "if __name__ == \"__main__\":\n",
    "    gradio.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd255c7b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "jupytext": {
   "cell_metadata_filter": "tags,-all",
   "main_language": "python",
   "notebook_metadata_filter": "-all"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}