# # NER | |
# Notebook implementation of named entity recognition. | |
# Adapted from [promptify](https://github.com/promptslab/Promptify/blob/main/promptify/prompts/nlp/templates/ner.jinja). | |
import json | |
import minichain | |
# Prompt to extract NER tags as json | |
class NERPrompt(minichain.TemplatePrompt): | |
template_file = "ner.pmpt.tpl" | |
def parse(self, response, inp): | |
return json.loads(response) | |
# Use NER to ask a simple queston. | |
class TeamPrompt(minichain.Prompt): | |
def prompt(self, inp): | |
return "Can you describe these basketball teams? " + \ | |
" ".join([i["E"] for i in inp if i["T"] =="Team"]) | |
def parse(self, response, inp): | |
return response | |
# Run the system. | |
with minichain.start_chain("ner") as backend: | |
ner_prompt = NERPrompt(backend.OpenAI()) | |
team_prompt = TeamPrompt(backend.OpenAI()) | |
prompt = ner_prompt.chain(team_prompt) | |
# results = prompt( | |
# {"text_input": "An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", | |
# "labels" : ["Team", "Date"], | |
# "domain": "Sports" | |
# } | |
# ) | |
# print(results) | |
gradio = prompt.to_gradio(fields =["text_input", "labels", "domain"], | |
examples=[["An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", "Team, Date", "Sports"]]) | |
if __name__ == "__main__": | |
gradio.launch() | |
# View prompt examples. | |
# + tags=["hide_inp"] | |
# NERPrompt().show( | |
# { | |
# "input": "I went to New York", | |
# "domain": "Travel", | |
# "labels": ["City"] | |
# }, | |
# '[{"T": "City", "E": "New York"}]', | |
# ) | |
# # - | |
# # View log. | |
# minichain.show_log("ner.log") | |