import warnings from dataclasses import dataclass from typing import List, Tuple from IPython.display import Markdown, display import minichain # + tags=["hide_inp"] warnings.filterwarnings("ignore") # - # Generic stateful Memory MEMORY = 2 @dataclass class State: memory: List[Tuple[str, str]] human_input: str = "" def push(self, response: str) -> "State": memory = self.memory if len(self.memory) < MEMORY else self.memory[1:] return State(memory + [(self.human_input, response)]) # Chat prompt with memory class ChatPrompt(minichain.TemplatePrompt): template_file = "chatgpt.pmpt.tpl" def parse(self, out: str, inp: State) -> State: result = out.split("Assistant:")[-1] return inp.push(result) # class Human(minichain.Prompt): # def parse(self, out: str, inp: State) -> State: # return inp.human_input = out with minichain.start_chain("chat") as backend: prompt = ChatPrompt(backend.OpenAI()) state = State([]) examples = [ "I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English I will do so by putting text inside curly brackets {like this}. My first command is pwd.", "ls ~", "cd ~", "{Please make a file jokes.txt inside and put some jokes inside}", """echo -e "x=lambda y:y*5+3;print('Result:' + str(x(6)))" > run.py && python3 run.py""", """echo -e "print(list(filter(lambda x: all(x%d for d in range(2,x)),range(2,3**10)))[:10])" > run.py && python3 run.py""", """echo -e "echo 'Hello from Docker" > entrypoint.sh && echo -e "FROM ubuntu:20.04\nCOPY entrypoint.sh entrypoint.sh\nENTRYPOINT [\"/bin/sh\",\"entrypoint.sh\"]">Dockerfile && docker build . -t my_docker_image && docker run -t my_docker_image""", "nvidia-smi" ] gradio = prompt.to_gradio(fields= ["human_input"], initial_state= state, examples=examples, out_type="json" ) if __name__ == "__main__": gradio.launch() # for i in range(len(fake_human)): # human.chain(prompt)