# # NER # Notebook implementation of named entity recognition. # Adapted from [promptify](https://github.com/promptslab/Promptify/blob/main/promptify/prompts/nlp/templates/ner.jinja). import json import minichain # Prompt to extract NER tags as json class NERPrompt(minichain.TemplatePrompt): template_file = "ner.pmpt.tpl" def parse(self, response, inp): return json.loads(response) # Use NER to ask a simple queston. class TeamPrompt(minichain.Prompt): def prompt(self, inp): return "Can you describe these basketball teams? " + \ " ".join([i["E"] for i in inp if i["T"] =="Team"]) def parse(self, response, inp): return response # Run the system. with minichain.start_chain("ner") as backend: ner_prompt = NERPrompt(backend.OpenAI()) team_prompt = TeamPrompt(backend.OpenAI()) prompt = ner_prompt.chain(team_prompt) # results = prompt( # {"text_input": "An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", # "labels" : ["Team", "Date"], # "domain": "Sports" # } # ) # print(results) gradio = prompt.to_gradio(fields =["text_input", "labels", "domain"], examples=[["An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", "Team, Date", "Sports"]]) if __name__ == "__main__": gradio.launch() # View prompt examples. # + tags=["hide_inp"] # NERPrompt().show( # { # "input": "I went to New York", # "domain": "Travel", # "labels": ["City"] # }, # '[{"T": "City", "E": "New York"}]', # ) # # - # # View log. # minichain.show_log("ner.log")