Spaces:
Runtime error
Runtime error
File size: 10,415 Bytes
3975d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import numpy as np
import pandas as pd
import torch
# import faiss
from sentence_transformers import util, LoggingHandler
from sentence_transformers.cross_encoder import CrossEncoder
import streamlit as st
def get_embeddings_from_contexts(model, contexts): # for embeddings
"""
It takes a list of contexts and returns a list of embeddings
:param model: the model you want to use to get the embeddings
:param contexts: a list of strings, each string is a context
:return: The embeddings of the contexts
"""
return model.encode(contexts)
def load_semantic_search_model(model_name):
"""
It loads the model
:param model_name: The name of the model to load
:return: A sentence transformer object
"""
from sentence_transformers import SentenceTransformer
return SentenceTransformer(model_name)
def convert_embeddings_to_faiss_index(embeddings, context_ids):
"""
We take in a list of embeddings and a list of context IDs, convert the embeddings to a numpy array,
instantiate a flat index, pass the index to IndexIDMap, add the embeddings and their IDs to the
index, instantiate the resources, and move the index to the GPU
:param embeddings: The embeddings you want to convert to a faiss index
:param context_ids: The IDs of the contexts
:return: A GPU index
"""
embeddings = np.array(embeddings).astype("float32") # Step 1: Change data type
index = faiss.IndexFlatIP(embeddings.shape[1]) # Step 2: Instantiate the index
index = faiss.IndexIDMap(index) # Step 3: Pass the index to IndexIDMap
index.add_with_ids(embeddings, context_ids) # Step 4: Add vectors and their IDs
res = faiss.StandardGpuResources() # Step 5: Instantiate the resources
gpu_index = faiss.index_cpu_to_gpu(
res, 0, index
) # Step 6: Move the index to the GPU
return gpu_index
def vector_search(query, model, index, num_results=20):
"""Tranforms query to vector using a pretrained, sentence-level
model and finds similar vectors using FAISS.
"""
vector = model.encode(list(query))
D, I = index.search(np.array(vector).astype("float32"), k=num_results)
return D, I
def id2details(df, I, column):
"""Returns the paper titles based on the paper index."""
return [list(df[df.index.values == idx][column])[0] for idx in I[0]]
def combine(user_query, model, index, df, column, num_results=10):
"""
It takes a user query, a model, an index, a dataframe, and a column name, and returns the top 5
results from the dataframe
:param user_query: the query you want to search for
:param model: the model we trained above
:param index: the index of the vectorized dataframe
:param df: the dataframe containing the data
:param column: the column in the dataframe that contains the text you want to search
:param num_results: the number of results to return, defaults to 5 (optional)
:return: the top 5 results from the vector search.
"""
D, I = vector_search([user_query], model, index, num_results=num_results)
return id2details(df, I, column)
def get_context(model, query, contexts, contexts_emb, top_k=100):
"""
Given a query, a list of contexts, and their embeddings, return the top k contexts with the highest
similarity score.
:param model: the model we trained in the previous section
:param query: the query string
:param contexts: list of contexts
:param contexts_emb: the embeddings of the contexts
:param top_k: the number of contexts to return, defaults to 3 (optional)
:return: The top_context is a list of the top 3 contexts that are most similar to the query.
"""
# Encode query and contexts with the encode function
query_emb = model.encode(query)
query_emb = torch.from_numpy(query_emb.reshape(1, -1))
contexts_emb = torch.from_numpy(contexts_emb)
# Compute similiarity score between query and all contexts embeddings
scores = util.cos_sim(query_emb, contexts_emb)[0].cpu().tolist()
# Combine contexts & scores
# print(contexts)
contexts_score_pairs = list(zip(contexts.premise.tolist(), scores))
result = sorted(contexts_score_pairs, key=lambda x: x[1], reverse=True)[:top_k]
# print(result)
top_context = []
for c, s in result:
top_context.append(c)
return top_context
def get_answer(model, query, context):
"""
> Given a model, a query, and a context, return the answer
:param model: the model we just loaded
:param query: The question you want to ask
:param context: The context of the question
:return: A string
"""
formatted_query = f"{query}\n{context}"
res = model(formatted_query)
return res[0]["generated_text"]
def evaluate_semantic_model(model, question, contexts, contexts_emb, index=None):
"""
For each question, we use the model to find the most similar context.
:param model: the model we're using to evaluate
:param questions: a list of questions
:param contexts: the list of contexts
:param contexts_emb: the embeddings of the contexts
:param index: the index of the context embeddings
:return: The predictions are being returned.
"""
predictions = combine(question, model, index, contexts, "premise") if index else get_context(model, question, contexts, contexts_emb) #for cosine
return predictions
@st.experimental_singleton
def load_models():
semantic_search_model = load_semantic_search_model("distiluse-base-multilingual-cased-v1")
model_nli_stsb = CrossEncoder('ssilwal/nli-stsb-fr', max_length=512, device='cpu')
model_nli = CrossEncoder('ssilwal/CASS-civile-nli', max_length=512, device='cpu')
model_baseline = CrossEncoder('amberoad/bert-multilingual-passage-reranking-msmarco', max_length=512, device='cpu')
df = pd.read_csv('synthetic-dataset.csv')
contexts = df.premise.unique()
contexts = pd.DataFrame(contexts, columns = ['premise'])
context_emb = np.loadtxt('contexts-emb.txt', dtype=np.float32)
return semantic_search_model, model_nli, model_nli_stsb, model_baseline, contexts, context_emb
def callback(state, object):
return
# st.session_state[f'{state}']
if 'slider' not in st.session_state:
st.session_state['slider'] = 0
if 'radio' not in st.session_state:
st.session_state['radio'] = 'Model 1'
if 'show' not in st.session_state:
st.session_state['show'] = False
if 'results' not in st.session_state:
st.session_state['results'] = None
# if 'run' not in st.session_state:
# st.session_state['run'] = True
# if 'radio' not in st.session_state:
# st.session_state['radio'] = 'Model 1'
semantic_search_model, model_nli, model_nli_stsb, model_baseline, contexts, context_emb = load_models()
@st.cache(suppress_st_warning=True)
def run_inference(model_name, query):
pred = evaluate_semantic_model(
semantic_search_model,
query,
contexts,
context_emb,
# index,
# #if u want to use faiss
)
# So we create the respective sentence combinations
sentence_combinations = [[query, corpus_sentence] for corpus_sentence in pred]
# Compute the similarity scores for these combinations
if model_name=='Model 1':
similarity_scores = model_nli.predict(sentence_combinations)
scores = [(score_max[0],idx) for idx,score_max in enumerate(similarity_scores)]
sim_scores_argsort = sorted(scores, key=lambda x: x[0], reverse=True)
results = [pred[idx] for _,idx in list(sim_scores_argsort)[:int(top_K)]]
if model_name=='Model 2':
similarity_scores = model_nli_stsb.predict(sentence_combinations)
sim_scores_argsort = reversed(np.argsort(similarity_scores))
results = [pred[idx] for idx in list(sim_scores_argsort)[:int(top_K)]]
if model_name=='Model 3':
similarity_scores = model_baseline.predict(sentence_combinations)
scores = [(score_max[0],idx) for idx,score_max in enumerate(similarity_scores)]
sim_scores_argsort = sorted(scores, key=lambda x: x[0], reverse=True)
results = [pred[idx] for _,idx in list(sim_scores_argsort)[:int(top_K)]]
return results
# only need for faiss index
# index = convert_embeddings_to_faiss_index(context_emb, contexts.index.values)
# query = ['Quelles protections la Loi sur la protection du consommateur accorde-t-elle aux individus?']
query = st.text_input('Civil Legal Query', 'Quelles protections la Loi sur la protection du consommateur accorde-t-elle aux individus?')
top_K = st.text_input('Choose Number of Result: ','10')
model_name = st.radio(
"Choose Model",
("Model 1", "Model 2", "Model 3"),
key='radio', on_change=callback, args=('radio','Model 1')
)
if st.button('Run', key='run'):
results= run_inference(model_name, query)
st.session_state['show'] = True
st.session_state['results'] = results
st.session_state['query'] = query
model_dict = {'Model 1': 'NLI-Syn', 'Model 2': 'NLI-stsb', 'Model 3': 'NLI-baseline'}
st.session_state['model'] = model_dict[model_name]
if st.session_state['show'] and st.session_state['results']!=None:
st.write("-"*50)
for result in st.session_state['results']:
line = f'Context: {result}\n\n'
st.write(line)
rate = st.slider('Please rate this output', min_value= 0, max_value=5, key='slider', on_change=callback, args=('slider','0'))
if st.session_state['slider'] !=0:
rate = st.session_state['slider']
st.write(f'You rated {rate}')
if st.button('Submit', key='rate'):
if st.session_state['results']!=None:
item = {'query': st.session_state['query'], 'results': st.session_state['results'], 'model': st.session_state['model'],'rating': st.session_state['slider']}
try:
with open('human.json','r') as file:
import json
archive = json.load(file)
archive.append(item)
with open('human.json','w') as file:
json.dump(archive, file)
except FileNotFoundError:
import json
data = [item]
print(data)
with open('human.json','w') as file:
json.dump(data, file)
|