import gradio as gr import torch from unsloth import FastLanguageModel from transformers import TextStreamer from transformers import AutoModelForCausalLM, AutoTokenizer # Replace with your model name #MODEL_NAME = "ssirikon/Gemma7b-bnb-Unsloth" #MODEL_NAME = "unsloth/gemma-7b-bnb-4bit" MODEL_NAME = "Lohith9459/gemma7b" # Load the model and tokenizer max_seq_length = 512 dtype = torch.bfloat16 load_in_4bit = True model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def generate_subject(email_body): instruction = "Generate a subject line for the following email." formatted_text = f"""Below is an instruction that describes a task. \ Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {email_body} ### Response: """ inputs = tokenizer([formatted_text], return_tensors="pt").to("cuda") text_streamer = TextStreamer(tokenizer) generated_ids = model.generate(**inputs, streamer=text_streamer, max_new_tokens=512) generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) def extract_subject(text): start_tag = "### Response:" start_idx = text.find(start_tag) if start_idx == -1: return None subject = text[start_idx + len(start_tag):].strip() return subject return extract_subject(generated_text) # Create the Gradio interface demo = gr.Interface( fn=generate_subject, inputs=gr.Textbox(lines=20, label="Email Body"), outputs=gr.Textbox(label="Generated Subject") ) demo.launch()