File size: 20,560 Bytes
769af1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import spacy\n",
"from sumy.parsers.plaintext import PlaintextParser\n",
"from sumy.nlp.tokenizers import Tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting en-core-web-sm==3.5.0\n",
" Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0-py3-none-any.whl (12.8 MB)\n",
"\u001b[2K ββββββββββββββββββββββββββββββββββββββββ 12.8/12.8 MB 3.9 MB/s eta 0:00:00\n",
"\u001b[?25hRequirement already satisfied: spacy<3.6.0,>=3.5.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from en-core-web-sm==3.5.0) (3.5.3)\n",
"Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (3.0.12)\n",
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (1.0.4)\n",
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (1.0.7)\n",
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2.0.6)\n",
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (3.0.6)\n",
"Requirement already satisfied: thinc<8.2.0,>=8.1.8 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (8.1.10)\n",
"Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (0.9.1)\n",
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2.4.6)\n",
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2.0.7)\n",
"Requirement already satisfied: typer<0.8.0,>=0.3.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (0.4.1)\n",
"Requirement already satisfied: pathy>=0.10.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (0.10.1)\n",
"Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (5.2.1)\n",
"Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (4.65.0)\n",
"Requirement already satisfied: numpy>=1.15.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (1.24.3)\n",
"Requirement already satisfied: requests<3.0.0,>=2.13.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2.29.0)\n",
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (1.10.8)\n",
"Requirement already satisfied: jinja2 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (3.1.2)\n",
"Requirement already satisfied: setuptools in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (67.8.0)\n",
"Requirement already satisfied: packaging>=20.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (23.0)\n",
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (3.3.0)\n",
"Requirement already satisfied: typing-extensions>=4.2.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (4.7.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2.0.4)\n",
"Requirement already satisfied: idna<4,>=2.5 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (3.4)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (1.26.16)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2023.7.22)\n",
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from thinc<8.2.0,>=8.1.8->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (0.7.9)\n",
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from thinc<8.2.0,>=8.1.8->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (0.0.4)\n",
"Requirement already satisfied: click<9.0.0,>=7.1.1 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (8.0.4)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /home/sssingh/miniconda3/envs/nlp/lib/python3.11/site-packages (from jinja2->spacy<3.6.0,>=3.5.0->en-core-web-sm==3.5.0) (2.1.1)\n",
"\u001b[38;5;2mβ Download and installation successful\u001b[0m\n",
"You can now load the package via spacy.load('en_core_web_sm')\n"
]
},
{
"data": {
"text/plain": [
"CompletedProcess(args=['python', '-m', 'spacy', 'download', 'en_core_web_sm'], returncode=0)"
]
},
"execution_count": 94,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subprocess.run([\"python\", \"-m\", \"spacy\", \"download\", \"en_core_web_sm\"])"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"This is an example text in Singapore by Sunil Singh on 6th August 2023"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nlp = spacy.load('en_core_web_sm')\n",
"doc = nlp(\"This is an example text in Singapore by Sunil Singh on 6th August 2023\")\n",
"doc"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'<!DOCTYPE html>\\n<html lang=\"en\">\\n <head>\\n <title>displaCy</title>\\n </head>\\n\\n <body style=\"font-size: 16px; font-family: -apple-system, BlinkMacSystemFont, \\'Segoe UI\\', Helvetica, Arial, sans-serif, \\'Apple Color Emoji\\', \\'Segoe UI Emoji\\', \\'Segoe UI Symbol\\'; padding: 4rem 2rem; direction: ltr\">\\n<figure style=\"margin-bottom: 6rem\">\\n<div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">This is an example text in \\n<mark class=\"entity\" style=\"background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\\n Singapore\\n <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">GPE</span>\\n</mark>\\n by \\n<mark class=\"entity\" style=\"background: #feca74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\\n Sunil Singh\\n <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">GPE</span>\\n</mark>\\n on \\n<mark class=\"entity\" style=\"background: #bfe1d9; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\\n 6th August 2023\\n <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">DATE</span>\\n</mark>\\n</div>\\n</figure>\\n</body>\\n</html>'"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ner_html = displacy.render(docs=doc, style=\"ent\", jupyter=False, page=True)\n",
"ner_html"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Entity Code</th>\n",
" <th>Entity Description</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>DATE</td>\n",
" <td>Absolute or relative dates or periods</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>GPE</td>\n",
" <td>Countries, cities, states</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Entity Code Entity Description\n",
"0 DATE Absolute or relative dates or periods\n",
"1 GPE Countries, cities, states"
]
},
"execution_count": 97,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"label, desc = [],[]\n",
"for ent in doc.ents:\n",
" label.append(ent.label_)\n",
" desc.append(spacy.explain(ent.label_))\n",
"label, desc = list(set(label)), list(set(desc))\n",
"df = pd.DataFrame(data={\"Entity Code\":label, \"Entity Description\":desc})\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(Singapore, Sunil Singh, 6th August 2023)"
]
},
"execution_count": 98,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"doc.ents"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This PRON pronoun\n",
"is AUX auxiliary\n",
"an DET determiner\n",
"example NOUN noun\n",
"text NOUN noun\n",
"in ADP adposition\n",
"Singapore PROPN proper noun\n",
"by ADP adposition\n",
"Sunil PROPN proper noun\n",
"Singh PROPN proper noun\n",
"on ADP adposition\n",
"6th ADJ adjective\n",
"August PROPN proper noun\n",
"2023 NUM numeral\n"
]
}
],
"source": [
"for token in doc:\n",
" print(token.text, token.pos_, spacy.explain(token.pos_))"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Token</th>\n",
" <th>Tag</th>\n",
" <th>Pos</th>\n",
" <th>Description</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>example</td>\n",
" <td>NN</td>\n",
" <td>NOUN</td>\n",
" <td>noun, singular or mass</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>text</td>\n",
" <td>NN</td>\n",
" <td>NOUN</td>\n",
" <td>noun, singular or mass</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Singapore</td>\n",
" <td>NNP</td>\n",
" <td>PROPN</td>\n",
" <td>noun, proper singular</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Sunil</td>\n",
" <td>NNP</td>\n",
" <td>PROPN</td>\n",
" <td>noun, proper singular</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Singh</td>\n",
" <td>NNP</td>\n",
" <td>PROPN</td>\n",
" <td>noun, proper singular</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6th</td>\n",
" <td>JJ</td>\n",
" <td>ADJ</td>\n",
" <td>adjective (English), other noun-modifier (Chin...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>August</td>\n",
" <td>NNP</td>\n",
" <td>PROPN</td>\n",
" <td>noun, proper singular</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>2023</td>\n",
" <td>CD</td>\n",
" <td>NUM</td>\n",
" <td>cardinal number</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Token Tag Pos Description\n",
"0 example NN NOUN noun, singular or mass\n",
"1 text NN NOUN noun, singular or mass\n",
"2 Singapore NNP PROPN noun, proper singular\n",
"3 Sunil NNP PROPN noun, proper singular\n",
"4 Singh NNP PROPN noun, proper singular\n",
"5 6th JJ ADJ adjective (English), other noun-modifier (Chin...\n",
"6 August NNP PROPN noun, proper singular\n",
"7 2023 CD NUM cardinal number"
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"word, tag, pos, desc = [], [], [], []\n",
"for token in doc:\n",
" if token.is_stop or token.is_punct:\n",
" continue\n",
" word.append(str(token))\n",
" tag.append(str(token.tag_))\n",
" pos.append(token.pos_)\n",
" desc.append(spacy.explain(token.tag_))\n",
"pd.DataFrame(data=dict(Token=word, Tag=tag, Pos=pos, Description=desc))\n"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from sumy.parsers.plaintext import PlaintextParser\n",
"from sumy.nlp.tokenizers import Tokenizer\n",
"from sumy.summarizers.text_rank import TextRankSummarizer\n",
"from sumy.summarizers.lex_rank import LexRankSummarizer\n",
"from sumy.summarizers.lsa import LsaSummarizer\n",
"from dataclasses import dataclass\n",
"@dataclass\n",
"class __AppConfig:\n",
" \"\"\"app-wide configurations\"\"\"\n",
" summarizers = dict(\n",
" TextRankSummarizer=\"sumy.summarizers.text_rank\",\n",
" LexRankSummarizer=\"sumy.summarizers.lex_rank\",\n",
" LsaSummarizer=\"sumy.summarizers.lsa\",\n",
" )\n",
"### make configs available to any module that imports this module\n",
"app_config = __AppConfig()"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"def class_from_name(module, class_name):\n",
" return getattr(module, class_name)"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
"method=\"TextRankSummarizer\"\n",
"def get_summarizer(method):\n",
" module=sys.modules[app_config.summarizers.get(method)]\n",
" summarizer = class_from_name(module, method)\n",
" return summarizer"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
"text = \"\"\"Interstellar is a 2014 epic science fiction film co-written, directed, and produced by Christopher Nolan. It stars Matthew McConaughey, Anne Hathaway, Jessica Chastain, Bill Irwin, Ellen Burstyn, Matt Damon, and Michael Caine. Set in a dystopian future where humanity is embroiled in a catastrophic blight and famine, the film follows a group of astronauts who travel through a wormhole near Saturn in search of a new home for humankind.\n",
"Brothers Christopher and Jonathan Nolan wrote the screenplay, which had its origins in a script Jonathan developed in 2007 and was originally set to be directed by Steven Spielberg. Kip Thorne, a Caltech theoretical physicist and 2017 Nobel laureate in Physics,[4] was an executive producer, acted as a scientific consultant, and wrote a tie-in book, The Science of Interstellar. Cinematographer Hoyte van Hoytema shot it on 35 mm movie film in the Panavision anamorphic format and IMAX 70 mm. Principal photography began in late 2013 and took place in Alberta, Iceland, and Los Angeles. Interstellar uses extensive practical and miniature effects, and the company Double Negative created additional digital effects.\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<sumy.parsers.plaintext.PlaintextParser at 0x7fa774f4a510>"
]
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser = PlaintextParser.from_string(text, Tokenizer(\"english\"))\n",
"parser"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 117,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"parser.document.sentences"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "nlp",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|