Spaces:
Runtime error
Runtime error
File size: 2,766 Bytes
48fc275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import os
import json
import requests
import spacy
import concurrent.futures
gpt3_url = "https://api.openai.com/v1/completions"
gpt3_api_key = os.environ["OPENAI_KEY"]
gpt3_headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {gpt3_api_key}",
}
def paraphrase(sent):
gpt3_payload = {
"model": "text-davinci-003",
"prompt": "Following is an original sentence followed by paraphrased version "
+ "of it with diverse choice of words:\n\noriginal: Once upon a time a group of "
+ "rats in forest were searching for water\n\nparaphrase: long ago in a jungle "
+ "a pack of rats were thirsty looking for drinking water\n###\noriginal: "
+ "{0}\nparaphrase:".format(sent),
"max_tokens": 256,
"temperature": 0.85,
"top_p": 1,
"frequency_penalty": 0.72,
"presence_penalty": 0.72,
"stop": ["###"],
}
response = requests.request(
method="POST", url=gpt3_url, headers=gpt3_headers, json=gpt3_payload
)
response = response.json()
paraphrase_sent = response["choices"][0]["text"]
return paraphrase_sent.strip()
def lambda_handler(event, context):
"""Sample pure Lambda function
Parameters
----------
event: dict, required
API Gateway Lambda Proxy Input Format
Event doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format
context: object, required
Lambda Context runtime methods and attributes
Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
Returns
------
API Gateway Lambda Proxy Output Format: dict
Return doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
"""
raw_text = r"{0}".format(event["body"])
json_payload = json.loads(raw_text)
input_text = json_payload["text"]
### break text into sentences
nlp = spacy.load(
"en_core_web_sm", disable=["ner", "tagger", "lemmatizer", "textcat"]
)
sentences = nlp(input_text).sents
### get each sentence paraphrased, use concurrency for speed
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(paraphrase, sent.text.strip())
for sent in sentences
if sent.text.strip() != ""
]
paraphrased_sentences = [future.result() for future in futures]
output = {"paraphrased_text": " ".join(paraphrased_sentences)}
### join the paraphrased sentences and return as full paraphrased text
return {
"statusCode": 200,
"body": json.dumps(output),
}
|